Generalised Inner Derivations in Semi Prime Rings

Dr. K. L Kaushik Associate Professor,(Head) Department of Mathematics Aggarwal College, Ballabgarh, Faridabad, India

Abstract:- Let A be any ring and $f(xy) = f(x)y+xh_a(y)$, where f be any generalised inner derivation(G.I.D) a be the fixed element of A.

In this paper, it is shown that (i) h_a must necessarily be a derivation for semi prime ring A. (ii) \exists no generalized inner derivations $f: A \to A$ such that $f(x \circ y) = x \circ y$

or

 $f(x \circ y) + x \circ y = 0 \forall x, y \in A,$

We have proved Havala [2] def. p.1147, Herstein [3] Lemma 3.1 p. 1106 as corollaries, along with other results.

I. INTRODUCTION

We have defined the G.I.D. of a ring. "Let A be any ring. An additive mapping $f : A \rightarrow A$ is said to be G.I.D if $f(xy) = f(x)y + xh_a(y)$

where $h_a: A \to A \ y \to [a,y] \ \forall x,y \in A$, fixed element $a \in A$," Let $G_I D(A)$ be the set of all G.I.D of A into itself. We prove that $f(xyz) = f(x)yz + xh_a(yz), \ \forall, x, y, z \in A, f \in G_I D(A)$.

In Theorem 2.2, we have shown that h_a must necessarily be a derivation on *A* where *A* be any semi prime ring. In Corollary 2.3, replacing h_a by *d*, we get Havala [2] def. p-1147 of Generalized derivation. In Corollary 2.5 replacing *f* by *d*, we get Herstein [3] Lemma 3.1, P-1093.

Keywords and phrases. G.I.D, semi prime ring, 2 torsion free semi prime ring, Unity.

A. In Theorem 3.2, we have proved that \exists no G.I.D $f: A \rightarrow A$ such that

or

$$f(x \circ y) = x \circ y$$

 $f(x \circ y) + x \circ y = 0 \forall x, y \in A$

and $x \circ y = xy + yx$., For any 2 torsion free semi prime ring A with identity.

Finally in Theorem 4.1 we have proved that (1+f(1))[x,y]+[a,[x,y]] = 0 for any non-zero Ideal *K* of *A* with unity.

Generalized Inner Derivation In this section, we study the G.I.D in a ring.

Definition 1.1. (Generalized Inner Derivation): An additive mapping $f : A \rightarrow A$ is said to be G.I.D if f(xy) = f(x)y + x[a,y], for fixed element $a \in A$ and $\forall x, y \in A$

We are taking the definition as $f(xy) = f(x)y + xh_a(y)$

where

Droof Now

 $h_a: A \to A \ y \to [a, y]$ is the inner derivation. Let $G_I D(A)$ be the set of all G.I.D of A into itself.

Lemma 1.2 If $f \in G_I D(A)$. Then $f(xyz) = f(x)yz + xh_a(yz), \forall x, y, z \in A$.

<i>Proof.</i> Now		
f(xyz)	=	f(xy)z + xy[a,z],
	=	(f(x)y + x[a,y])z + xy[a,z]
	=	f(x)yz + x[a,y]z + xy[a,z]
	=	f(x)yz + x(ay - ya)z + xy(az - ya)z + xy(az - ya)z + xy(az - ya)z + y(az - ya)z + y(
	=	za) f(x)yz + xayz - xyaz + xyaz -
	=	xyza f(x)yz + x(ayz - yza)
	=	f(x)yz + x[a,yz]
f(xyz)	=	$f(x)yz + xh_a(yz)$

Hence proved.

B. In this section, we take A be any semi prime ring.

Definition 2.1. (Semi prime ring) : Let *A* be any ring. Then *A* is said to be semi-prime ring if $xax = 0 \forall a \in A \Rightarrow x = 0$

Now A = semi prime ring has the following property: "If Aa = 0, $a \in A$ then a = 0"

This result is used in Theorem 2.2.

Theorem 2.2 Let A be any semi-prime ring and f be a generalized inner derivation of A. Then h_a must neccessarily be a derivation.

ISSN No:-2456-2165

 $f(x \circ y)$

 $f(x \circ y) + x \circ y$

=

 $x \circ y$

= 0

Proof. Now

$$f(xyz) = f(xy)z + xy h_a(z)$$

= (f(x)y + xh_a(y))z + xy h_a(z)

$$= f(x)yz + xh_a(y)z + xyh_a(z)(2)$$

From (1) and (2), we get

 $x(h_a(yz) - h_a(y)z - yh_a(z)) = 0$ Now $f(x(y+z)) = f(x)(y+z) + xh_a(y+z)$ (3)

$$=f(x)y + f(x)z + xh_a(y + (4))$$

 $=f(x)y + xh_a(y) + f(x)z + (5)$

z). Also

$$\begin{array}{ll} f(x(y+z)) & = & f(xy+yz) \\ & = & f(xy) + f(xz) \end{array}$$

 $xh_a(z)$ From (4) and (5), we have

$$x(h_a(y+z) - h_a(y) - h_a(z)) = 0$$
(6)

Since *A* is semi prime ring and if Aa = 0 Then a = 0, $a \in A$. \Rightarrow From (3) and (6), we have

$$h_a(yz) - h_a(y)z - yh_a(z) = 0$$

$$h_a(y + z) - h_a(y) - h_a(z) = 0$$

 $\Rightarrow h(yz) = h_a(y)z + yh_a(z) h_a(y+z) = h_a(y) + h_a(z)$

Hence h_a is a derivation. Hence proved.

Corollary 2.3 $f(xy) = f(x)y+xh_a(y)$ where h_a is a derivation replacing h_a by d, we get Havala [2] def. P.1147 of Generalized derivation

Corollary 2.4 Havala [2] result is also proved. "Let *A* be any semi prime ring. Then $f(xyz) = f(x)yx + xyd(x) + xd(y)x \forall x, y \in A$ where *f* is generalized derivation of *A*. "

Corollary 2.5 Replacing *f* by *d* in Corollary 2.4, we get Lemma 3.1 P.1106 of Herstein [3] d(xyz) = d(x)yx + xd(y)x + xy d(x)

C. In this section, we take A be any 2 torsion free semiprime ring.

Definition 3.1. Let *A* be any ring which is 2 torsion free and also semi prime. We define $x \circ y = xy + yx \forall x, y \in A$

Theorem 3.2 Let *A* be any ring which is 2 torsion free and also semi prime with Identity 1. Then \exists no generalized inner derivation $f: A \rightarrow A$ such that

$$f(x \circ y) \qquad \qquad = x \circ y \; \forall \; x, y \in A$$

or $f(x \circ y) + x \circ y = 0$.

Proof. If possible, let \exists a generalized derivation $f: A \rightarrow A$ s.t $f(x \circ y) = x \circ y$ or $f(x \circ y) + x \circ y = 0 \forall x, y \in A$.

Now

or

Putting
$$y = 1$$

$$\Rightarrow f(x \circ 1) = x \circ 1$$
 or $f(x \circ 1) + x \circ 1 = 0$

$$\Rightarrow f(x + x) = x + x$$
 or $f(x + x) + x + x = 0$

$$\Rightarrow f(2x) = 2x$$
 or $f(2x) + 2x = 0$

$$\Rightarrow f(2x) = 2x$$
 or $f(2x) = -2x$

$$\Rightarrow f(2x) = \pm 2x$$
 $\forall x \in A\&A \text{ is 2-Torsion free.}$
Now $xy + yx = x \circ y = \pm f(x \circ y)$

 $= \pm f(xy + yx)$ $= (-(xy + yx)) \quad (\because f(x \circ y) = -(x \circ y)) xy + yx$ $= \mp (xy + yx)$ $\Rightarrow 2(xy + yx) = 0$ $\Rightarrow x \circ y = 0$

Since A is 2-Torsion free $\Rightarrow x^2 = 0$

Now

$x \circ y$	=	0
$\Rightarrow x \circ (x+1) =$	0	(Taking $y = x + 1$)
$\Rightarrow 2x$	=	0
$\Rightarrow x$	=	$0 \forall x \in A$

which is a contradiction (: Identity is 1).Hence our supposition is wrong.

 $f(x \circ y) + x \circ y$

= 0

So, \exists no generalized inner derivation *f* satisfying $f(x \circ y) = x \circ y$

Hence proved.

D. In this section, we take *A* be any ring with unity and we consider non-zero Ideal of *A*

Lemma 4.1 Let $K \in \{0\}$ be an Ideal of A with unity and f be a

 $\forall x, y \in A$

ISSN No:-2456-2165

G.I.D of A. Then $\forall x, y \in K$ satisfying xy + f(xy) = yx + f(yx)(1 + f(1))[x, y] + [a, [x, y]] = 0

Proof.

 $\begin{aligned} xy + f(xy) &= yx + f(yx) \\ \Rightarrow xy + f(x)y + xh_a(y) &= yx + f(y)x + yh_a(x) \\ \Rightarrow xy + (f(1)x + 1h_a(x))y + xh_a(y) &= yx + (f(1)y + 1h_a(y))x + yh_a(x) \\ \Rightarrow xy + f(1)xy + axy - xya &= yx + f(1)yx + ayx - yxa \\ \Rightarrow (xy - yx) + f(1)xy - f(1)yx + axy - xya - ayx + yxa &= 0 \\ \Rightarrow [x,y] + f(1)[x,y] + a(xy - yx) - (xy - yx)a &= 0 \\ \Rightarrow [x,y] + f(1)[x,y] + a[x,y] - [x,y]a &= 0 \\ \Rightarrow [x,y] + f(1)[x,y] + [a,[x,y]] &= 0 \\ \Rightarrow (1 + f(1))[x,y] + [a,[x,y]] &= 0 \\ \text{Hence proved.} \end{aligned}$

II. CONCLUSION

We showed that for any Ring A which is semi prime, h_a is a derivation. We also proved Havala [2] def. p.1147, Herstein [3] Lemma 3.1 p. 1106 as corollaries of our results.

REFERENCES

- [1]. Matej Bresar, On the distance of the composition of two derivations to Generalized derivations, Glasgow Math. J. 33 (1991), Page 89-93.
- [2]. B. Havala, *Generalized Derivations in rings*, Communication in Algebra, 26 [4], 1998, Page 1147-1166.
- [3]. I. N. Herstein, Jordan Derivations of Prime rings, Proc. Amer. Math. Soc.,8 (1957), 1104-1110.
- [4]. M. Hongan, A note on semi-prime rings with derivation, International J. Math. and Math. Sci. Vol. 20 No. 2 (1997), Page 413-415.