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Abstract:- The theoretical examination of the effects of 

velocity, temperature, concentration parameter 

variations and magnetic fields on convective periodic flow 

was studied on an electrically conducting, viscous and 

incompressible fluid through a porous medium in an 

inclined plane. A set of coupled ordinary differential 

equations arising from the formulation of the problem 

were solved analytically by method of undetermined 

coefficient. The solution to the problem is obtained 

thereafter and with realistic parameter values the results 

were displayed in plots. The effects of parameter 

variations on velocity, concentration and temperature 

fields were discussed with the help of the plots. From the 

plots, the following results have been drawn; it is 

observed that increase in the Prandtl number decreases 

the temperature, increase in the Reynolds number 

decreases the temperature of the fluid,  Reynolds number 

decreases the concentration of the fluid, increase in the 

Schmidt number decreases the concentration making it 

more significant at the centre of the flow region,  increase 

in permeability leads to increase in the velocity and  

increase in the magnetic field leads to decrease in the 

velocity.  
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I. INTRODUCTION 

 

Porous medium is a medium that has interconnected 

pores where fluids can flow through. It is useful in the sense 
that it can be used in effective protection of some structural 

components of turbojet and rocket engines such as 

combustion chamber walls, exhaust nozzles or gas turbine 

blades from hot gases. Eckert and Drake(1958) and Jain and 

Bansal(1973) described heat transfer reduction of coutte flow 

of incompressible fluid injected into the flow field from a 

plate that is stationary vis a vis the removal of heat from a 

plat that is moving. It has a two dimensional issue in 

capsulated by uniform injection and suction applied at the 

porous plate. Gersten and Gross(1974) verified heat transfer 

along a plane wall with periodic suction velocity. 

 

MHD meaning magneto hydrodynamic fluid is a fluid 

that conducts electricity in electric and magnetic fields. It 

incorporates fluid dynamics and electromagnetic assertions to 

describe concurrent effects of magnetic field on the flow and 

vice versa. Its concern is on gases that are ionized and liquids 

that are electrically conducting. Varieties of papers have 

evolved over the years on this concept. Take for instance; 

Singh and Mathew(2008) studied the effects that 
injection/suction has on oscillating hydrodynamic magnetic 

flow in a horizontal channel that is rotating. Attia and 

Kotb(1996) examined magneto hydrodynamic flow between 

parallel plates having heat transfer. Swapna et al.(2017) 

studied mass transfer on mixed convective periodic flow 

through porous medium in an inclined channel. 

 

The concept of natural convective heat transfer occurs 

owing to difference in temperature in an enclosure or near a 

heated or cooled flat plate. Much attention has been given to 

natural convection on horizontal and vertical channel but a 

few attention has been given to inclined plates despite the 
frequent occurrence of this geometric configuration in 

engineering and natural environment. Amongst the few 

researchers that made research on inclined surface are 

Ganesan and Palani(2003) and Sparrow and Husar(1969) 

who studied natural convection on inclined plate. Said et 

al.(2005) investigated turbulent natural convection between 

inclined isothermal plates. Chen(2004) studied natural 

convection flow over an inclined surface that is permeable 

having variable wall temperature and concentration. Hossain 

et al.(1996) examined the free convection from evolving 

from inclined at small angle to the plate that is isothermal. 
The numerical solution of free convection flow past an 

inclined surface was studied by Anghel et al.(2001). Exact 

solution analysis of radiative convective flow of heat and 

mass transfer over inclined plate in a porous medium was 

examined Bhuvaneswari et al.(2010) deduced MHD flow, 

heat and mass transfer on an inclined stretching sheet having 

thermal radiation and hall effect that is permeable. 

 

The study of thermal radiation in channels of different 

geometries has received attention from researchers owing to 

its significance in free convection which is useful in the 

heating of rooms and buildings by the use of radiators. 
Ahmed and Sarmah(2009) studied thermal radiation effect on 
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a transient MHD flow with mass transfer past an impulsively 

fixed vertical plate. Alabraba et al.(1992) examined free 
convection interaction with thermal radiation in a 

hydrodynamic boundary layer taking into account the binary 

chemical reaction and the less attended Soret and Dufour 

effects. Alagoa et al.(1998) looked into the radiative and free 

convective effects of a MHD flow through a porous medium 

between infinite parallel plates with time-dependent suction. 

Bestman, A. R.(2005) studied free convection heat transfer to 

steady radiating non - Newtonian MHD flow past a vertical 

porous plate. Cess, R. D.(1966) studied the interaction of 

thermal radiation with free convection heat transfer. Ghosh et 

al.(2010) investigated the thermal radiation effects on 

unsteady hydromagnetic gas flow along an inclined plane 
with indirect natural convection. Israel Cookey et al.(2010) 

studied MHD oscillatory Coutte flow of a radiating viscous 

fluid in a porous medium with periodic wall temperature. 

Sharma et al.(2014) studied radiative and free convective 

effects on MHD flow through a porous medium with periodic 

wall temperature and heat generation or absorption. 

 

The aim of this paper is to examine the 

magnetohydrodynamic convective periodic flow through a 

porous medium in an inclined channel with thermal radiation 

and chemical reaction. 
 

II. FORMULATION OF THE PROBLEM. 

 

We consider the periodic flow of an electrically 

conducting, viscous and incompressible fluid through an 

inclined medium. The two plates are at a distance d apart. 

The coordinate system is chosen such that x – axis lies along 

the centerline and the y – axis along the magnetic field. The 

fluid is injected through the lower stationary porous plate and 

sucked through the upper porous plate in oscillatory motion 

in its own plane. The injection and suction velocity is 𝑉′. The 
magnetic field is applied perpendicular to the parallel plates. 

The temperature difference of the plates is assumed high 

enough to induce radiation. All the physical parameters are 

independent of x for this problem of fully developed flows 

that is laminar. The flow is governed by the following 

equations: 

 

𝜕𝑉′

𝜕𝑦′ = 0                                (1) 

 
𝜕𝑢′

𝜕𝑡′  + 𝑣′ 𝜕𝑢′

𝜕𝑦𝐼  = -
1

𝜌

𝜕𝑃′

𝜕𝑥′  + 𝜗
𝜕2𝑢′

𝜕𝑦′2 – 
𝜗

𝐾′ 𝑢′  - 
𝜎𝐵0

2

𝜌
𝑢′  + 

g𝐵𝑇𝑇′sin∝ + g𝐵𝐶𝐶′sin∝  (2) 

 
𝜕𝑇′

𝜕𝑡′  + 𝑣′ 𝜕𝑇′

𝜕𝑦′ = 
𝑘

𝜌𝐶𝑝

𝜕2𝑇′

𝜕𝑦′2 - 
1

𝜌𝐶𝑝

𝜕𝑞′

𝜕𝑦′   (3) 

 
𝜕𝐶′

𝜕𝑡′  + 𝑣′ 𝜕𝐶′

𝜕𝑦′ = 𝐷
𝜕2𝐶′

𝜕𝑦′2 - 𝐾𝑟
′𝐶′ (4) 

 
The boundary conditions expedient to this problem are 

 

𝑢′ = 0,  𝑣′ = 𝑉, 𝑇′ = 0, 𝐶′ = 0 at y = -
𝑑

2
   (5) 

 

𝑢′  = Ucos 𝜔′𝑡′ , 𝑣𝐼 = 𝑉 , 𝑇′  = 𝑇0 cos 𝜔′𝑡′ , 𝐶′  = 

𝐶0cos𝜔′𝑡′ at y = 
𝑑

2
   (6) 

 

where 𝑢′(𝑦′, 𝑡′) axial velocity, 𝑡′ is the time, 
  is the 

kinematic viscosity, 𝜎  is electrical conductivity, k is the 

thermal conductivity, 𝐶𝑝  is the specific heat at constant 

pressure, 𝜌  is the fluid density, 𝜔  is the frequency of 

oscillation, 𝑇′ is the temperature of the fluid, 𝐶′  is the 

concentration of the fluid, 𝐵0 is the magnetic field, 𝑇0  and 𝐶0 
are reference temperature and concentration respectively, D 

is mass diffusivity, 𝑃′  is the pressure, V is the oscillating 

velocity, g is the acceleration due to gravity, 𝐾𝑟
′ is the 

chemical reaction term, 𝑞′  is the radiation flux, 𝐾′  is the 

permeability of the porous medium, 𝐵𝑇and 𝐵𝐶 are coefficient 

of thermal and concentration constant. 

 

We assumed that the fluid is optically thin having a 

relatively low density. Hence the heat flux according to 
Cogley et al.(1968) is expressed as; 

 







 T
y

q 24



 (7) 

 

where is the mean absorption coefficient. 

 

Going by the internal flow of the oscillation in the 
channel; the pressure gradient variations is assumed as  

 










tP
x

p
cos

1





   (8) 

 

Substituting equation (7) into equation (3); we get 

 

𝜕𝑇′

𝜕𝑡′  + 𝑣′ 𝜕𝑇′

𝜕𝑦′ = 
𝑘

𝜌𝐶𝑝

𝜕2𝑇′

𝜕𝑦′2 - 
4𝛼2

𝜌𝐶𝑝
𝑇𝜄 

 

Equation (1) integrates to 
v  = V on the assumption 

that there is constant injection and suction velocity V at the 

upper and lower plates. 

 

 Introducing the following dimensionless variables: 

 

x = 
𝑥′

𝑑
, y = 

𝑦′

𝑑
, u = 

𝑢′

𝑈
, T = 

𝑇′

𝑇0
, 𝑣′ = 𝑉, C = 

𝐶′

𝐶0
, Sc = 

𝜗

𝐷
, P = 

𝑃′

𝜌𝑈𝑉
, 𝜔 = 

𝜔′𝑑2

𝜗
, t = 𝜔′𝑡′, Re = 

𝑉𝑑

𝜗
, 
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𝑃𝑟 = 
𝜇𝐶𝑝

𝐾𝜗
= 

𝜌𝐶𝑝

𝐾
, K = 

𝐾′

𝑑2, Gr = 
𝑔𝐵𝑇𝑑2𝑇0

𝜗𝑉
, M = 𝐵0𝑑√

𝜎

𝜇
, Gm = 

𝑔𝐵𝑐𝑑2𝐶0

𝜗𝑉
, N = 2∝

𝑑

√𝐾
,𝐾𝑟  = 

𝐾𝑟
′𝑑2

𝜗
, 

𝜌 =
𝜇

𝜈
 (10) into equations (2), (4)  

 

and (9), we obtain 
 
𝜔

𝑅𝑒

𝜕𝑢

𝜕𝑦
 + 

𝜕𝑢

𝜕𝑦
 = -

𝜕𝑃

𝜕𝑥 
 + 

1

𝑅𝑒

𝜕2𝑢

𝜕𝑦2  - 
𝑀2

𝑅𝑒
𝑢  - 

1

𝑘𝑅𝑒
𝑢  + 

𝐺𝑟

𝑅𝑒
𝑠𝑖𝑛 ∝T 

+
𝐺𝑚

𝑅𝑒
𝑠𝑖𝑛 ∝C                                               (11) 

 
𝜔

𝑅𝑒

𝜕𝑇

𝜕𝑡
 + 

𝜕𝑇

𝜕𝑦
 = 

1

𝑅𝑒𝑃𝑟

𝜕2𝑇

𝜕𝑦2 - 
𝑁2

𝑅𝑒𝑃𝑟
𝑇   (12) 

 
𝜔

𝑅𝑒

𝜕𝐶

𝜕𝑡
 + 

𝜕𝐶

𝜕𝑦
 = 

1

𝑆𝑐𝑅𝑒

𝜕2𝐶

𝜕𝑦2 - 
𝐾𝑟

𝑅𝑒
𝐶   (13) 

 

Where u is the dimensionless velocity, y is the 

dimensionless co-ordinate axis normal to the plates, t is the 

dimensionless time, T is the dimensionless temperature, C is 

the dimensionless concentration, Gr is the thermal Grashof 
number, Gm is the concentration Grashof number, Pr is the 

Prandt number, M is the magnetic parameter, Sc is the 

Schmidt number, K porosity and Kr chemical reaction. 

 

The corresponding boundary conditions are non - 

dimensioned to; 

 

u = 0, T = 0, C = 0 at y = -
1

2
   

     

 

u = 1, T = I, C = 1 at y = 
1

2
   (14) 

 

III. METHOD OF SOLUTION 

 

Equations (10) – (13) are second order coupled partial 

differential equations, we therefore assumed the solution of 

the form; 

 

u(y) = 𝑢0(y)𝑒𝑖𝑡                             (15) 
 

T(y,t) = 𝜃0(y)𝑒𝑖𝑡    (16) 

 

C(y,t) = 𝜑0(y)𝑒𝑖𝑡    (17) 

 

-
𝜕𝑃

𝜕𝑥 
= 𝑃𝑒𝑖𝑡     (18) 

 

Applying (14 –17) into the relevant equations in (10 - 

13), we obtain  

 

𝑑2𝑢0

𝑑𝑦2 − 𝑅𝑒
𝑑𝑢0

𝑑𝑦
 -  (M2 + 

𝐼

𝐾
 + i𝜔)𝑢0 = -𝑅𝑒𝑃 - Grsin∝ 𝜃0 - 

Gmsin∝ 𝜑0                               (19) 

 
𝑑2𝜃0

𝑑𝑦2  - 𝑅𝑒𝑃𝑟
𝑑𝜃0

𝑑𝑦
 – (N2 + i𝜔𝑃𝑟)𝜃0= 0   (20) 

 
𝑑2𝜑0

𝑑𝑦2  - 𝑅𝑒𝑆𝑐
𝑑𝜑0

𝑑𝑦
 – (𝑅𝑒𝑆𝑐𝐾𝑟  + i𝜔𝑆𝑐)𝜑0= 0  (21) 

 

Subject to: 

 

𝑢0 = 𝜃0 = 𝜑0 = 0 at y = -
1

2
  

      

𝑢0 =  𝜃0 =  𝜑0 = 1at y = 
1

2
    (22) 

 

Equations (18) – (20) are ordinary second order coupled 
differential equations and solved under the boundary 

conditions (21) through a straight forward analytical method, 

we obtain u(y), 𝜃0(𝑦) and 𝜑0(𝑦) as  

 

𝑢0  = -
1

(1−𝑒 
−  

∝5
2 )𝑒 

∝6
2

[1 + 𝐷12𝑒
∝5
2 −  𝐷12𝑒

−∝6
2  +

 𝐷12] 𝑒
∝5𝑦

2  +
1

(1−𝑒 
−  

∝5
2 )𝑒 

∝6
2

[1 + 𝐷12𝑒
∝5
2 − 𝐷12] 𝑒

∝6𝑦

2  + 

𝐷7  + 𝐷8𝑒∝1𝑦− 
∝2
2  - 𝐷9𝑒∝2𝑦− 

∝1
2  + 𝐷10𝑒∝3𝑦− 

∝4
2  - 

𝐷11𝑒∝4𝑦− 
∝3
2        (23) 

 

𝜃0 =  
𝑒

∝2𝑦− 
∝1
2  − 𝑒

∝1𝑦− 
∝2
2

𝑒
∝2− ∝1

2  − 𝑒
∝1− ∝2

2

     (24) 

 

𝜑0 =  
𝑒

∝4𝑦− 
∝3
2  − 𝑒

∝3𝑦− 
∝4
2

𝑒
∝4− ∝3

2  − 𝑒
∝3− ∝4

2

     (25) 

 
The final expressions of u(y,t), T(y,t) and C(y,t) are 

given by  

 

U(y,t) = (-
1

(1−𝑒 
−  

∝5
2 )𝑒 

∝6
2

[1 + 𝐷12𝑒
∝5
2 −  𝐷12𝑒

−∝6
2  +

 𝐷12] 𝑒
∝5𝑦

2  + 
1

(1−𝑒 
−  

∝5
2 )𝑒 

∝6
2

[1 + 𝐷12𝑒
∝5
2 −  𝐷12] 𝑒

∝6𝑦

2  + 

𝐷7  + 𝐷8𝑒∝1𝑦− 
∝2
2  - 𝐷9𝑒∝2𝑦− 

∝1
2  + 𝐷10𝑒∝3𝑦− 

∝4
2  - 

𝐷11𝑒∝4𝑦− 
∝3
2 )𝑒𝑖𝑡   (26) 

 

T(y,t) = [
𝑒

∝2𝑦− 
∝1
2 − 𝑒

∝1𝑦− 
∝2
2

𝑒
∝2− ∝1

2  − 𝑒
∝1− ∝2

2

] 𝑒𝑖𝑡  (27) 
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C(y,t) = ⌊
𝑒

∝4𝑦− 
∝3
2 − 𝑒

∝3𝑦− 
∝4
2

𝑒
∝4− ∝3

2  − 𝑒
∝3− ∝4

2

⌋ 𝑒𝑖𝑡   (28) 

 

The values for D1 to D12 are given and clearly stated in 

the appendix. 
 

The physical point of expression for the shear stress, 

Nusselt number and the Sherwood number on the walls are 

given below 

 

𝜏 =  (
𝜕𝑢0

𝜕𝑦
)

𝑦=0
  (29) 

 

𝑁𝑢 = − (
𝜕𝜃0

𝜕𝑦
)

𝑦=0
  (30) 

 

𝑆ℎ = − (
𝜕𝜑0

𝜕𝑦
)

𝑦=0
  (31) 

 

IV. RESULTS AND DISCUSSION 

 

The effect of the Prandtl number on the temperature is 

shown in figure 1. It is observed that increase in the Prandtl 

number decreases the temperature. This is possible physically 

because increasing the Prandtl number decreases the thermal 

conductivity of the fluid. Figure 2 shows the effect of the 

Reynolds number on the temperature, where it is shown that 

increase in the Reynolds number decreases the temperature 

of the fluid. The effect is more pronounced at the centre of 
the flow region. This is because the viscous forces exerts 

more influence on the inertial forces at the centre such that 

heat transfer performance is reduced. The influence of 

radiation on the temperature is indicated in figure 3. Increase 

in the radiation parameter has the tendency of reducing the 

temperature. Physically, radiating heat at higher values 

results in cooling the fluid. The effect of the frequency of 

oscillation on temperature is shown in figure 4, wherein it is 

observed that as the frequency of oscillation increases, the 

temperature reduces.  Figure 5 shows the effect of the 

Reynolds number on the concentration profile. It can be seen 

clearly that the Reynolds number decreases the concentration 

of the fluid.  
 

Figure 6 indicates the effect of the Schmidt number on 

the concentration of the fluid. The plot reveals that increase 

in the Schmidt number decreases the concentration making it 

more significant at the centre of the flow region. The 

influence of the Reynolds number on the skin friction is 

shown in figure 7. There is no significant change in the skin 

friction for the values of Reynolds number considered even if 

the radiation parameter is increased. A slight decrease is 

noted in the skin friction as the Schmidt number and 

radiation parameter are simultaneously increased as shown in 

figure 8. Figure 9 shows that the skin friction is reduced as 
the Schmidt number and the Reynolds number are increased 

simultaneously. The heat transfer effect is shown in figure 

10. The heat transfer rate increases as a result of increase in 

radiation and Reynolds parameter. The effect of the Reynolds 

number on the mass transfer rate is shown in figure 11. It is 

noted that there is no significant change in the mass transfer 

rate for simultaneous increases in the value of the Reynolds 

number and radiation parameters. The effect of the 

permeability of the medium is shown in figure 12. It is 

observed that increase in permeability leads to increase in the 

velocity. This is true because permeability is a property of the 
porous medium and its increase shows the ability of the 

formation to transmit more fluid. Figure 13 shows the effect 

of the magnetic field on the velocity. The profile reveals that 

increase in the magnetic field leads to decrease in the 

velocity. This is as a result of the Lorentz force in the 

magnetic field. The influence of thermal radiation in the 

velocity is depicted in figure 14. Take notice that increase in 

the thermal radiation decrease the velocity. This is because 

increase in the thermal radiation leads to decrease in the 

momentum boundary layer. Figure 15 shows the effect of the 

Grashoff number on the velocity. It is observed that increase 

in the Grashoff number increases the velocity of the fluid. 
Physically, this is possible because thermal buoyancy 

increases the boundary layer which leads to increase in 

velocity. 
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Fig 1:- Effect of Prandtl number on temperature for   𝜔 = 1, 𝑡 = 0, 𝑅𝑒 = 0.5, 𝑁 = 0.5 

 

 
Fig 2:- Effect of Reynolds number on temperature for   𝜔 = 1, 𝑡 = 0, 𝑃𝑟 = 0.71, 𝑁 = 0.5 

 

 
Fig 3:- Effect of Radiation parameter on temperature for   𝜔 = 1, 𝑃𝑟 = 0.71, 𝑡 = 0, 𝑅𝑒 = 0.5 

( )y

 

0.2,0.4,0.6,0.8Pr   

y  

0.5,1.0,1.5,2.0Re   

y  

( )y

 

0.1,0.2,0.3,0.5N   

( )y  

y  

http://www.ijisrt.com/


Volume 5, Issue 1, January – 2020                                               International Journal of  Innovative Science and Research Technology                                                 

                    ISSN No:-2456-2165 

 

IJISRT20JAN647                                                                       www.ijisrt.com                         1134 

 
Fig 4:- Effect of frequency of oscillatory on temperature for   𝑅𝑒 = 0.5, 𝑡 = 0, 𝑃𝑟 = 0.71, 𝑁 = 0.5 

 

y  

Fig 5:- Effect of Reynolds number on concentration for   𝜔 = 0.5, 𝑡 = 0, 𝑆𝑐 = 0.2 

 

 

y  

Fig 6:- Effect of Schmidt number on concentration for   𝜔 = 0.5, 𝑡 = 0, 𝑅𝑒 = 0.5 

1,2,3,4   

( )y

 

y  

 

( )y

 

1,2,3,4Re   

0.2,0.4,0.6,0.9Sc   

( )y
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  

Fig 7:- Effect of Reynolds number on the skin friction for   𝜔 = 0.5, 𝑡 = 0, 𝑆𝑐 = 0.2, 𝑃𝑟 = 0.71 
 

 N  

Fig 8:- Effect of Scmidt number on the skin friction for   𝜔 = 0.5, 𝑡 = 0, 𝑅𝑒 = 0.5, 𝑃𝑟 = 0.71 

 

Re  

Fig 9:- Effect of Schmidt number on the skin friction for   𝜔 = 0.5, 𝑡 = 0, 𝑅𝑒 = 0.5, 𝑃𝑟 = 0.71 
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Nu  

Fig 10:- Effect of Reynolds number on heat transfer for  𝑡 = 0, 𝑃𝑟 = 0.71, 𝜔 = 0.5 

 

 
Fig 11:- Effect of Reynolds number on mass transfer for   𝜔 = 0.5, 𝑡 = 0, 𝑆𝑐 = 0.2 

 

 
Fig 12:- Effect of thermal radiation on the velocity for 𝑅𝑒 = 1, 𝑃𝑟 = 0.71, 𝑀 = 0.5, 𝐺𝑟 = 5, 𝐺𝑚 = 5, 𝑆𝑐 = 0.5, 𝐾 = 0.1, 𝑡 = 0, 𝑃 =

1, 𝛼 = 45, 𝜔 = 1 
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Fig 13:- Effect of Grashof number on the velocity for 𝑅𝑒 = 1, 𝑃𝑟 = 0.71, 𝑁 = 0.5, 𝑀 = 0.5, 𝐺𝑚 = 5, 𝑆𝑐 = 0.5, 𝐾 = 0.1, 𝑡 = 0, 𝑃 =

1, 𝛼 = 45, 𝜔 = 1 
 

 
Fig 14:- Effect of permeability on the velocity for 𝑅𝑒 = 1, 𝑃𝑟 = 0.71, 𝑁 = 0.5, 𝐺𝑟 = 5, 𝐺𝑚 = 5, 𝑆𝑐 = 0.5, 𝑀 = 0.5, 𝑡 = 0, 𝑃 =

1, 𝛼 = 45, 𝜔 = 1 
 

 
Figure15: Effect of magnetic field on the velocity for 𝑅𝑒 = 1, 𝑃𝑟 = 0.71, 𝑁 = 0.5, 𝐺𝑟 = 5, 𝐺𝑚 = 5, 𝑆𝑐 = 0.5, 𝐾 = 0.1, 𝑡 = 0, 𝑃 =

1, 𝛼 = 45, 𝜔 = 1 
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V. CONCLUSIONS 

 
In this paper, we have analyzed the MHD convective 

periodic flow through a porous medium in an inclined 

channel with thermal radiation and chemical reaction. The 

governing equations are solved analytically. The solutions 

for velocity, temperature and concentration fields are 

obtained in terms of exponential and complimentary 

functions. From this investigation, the following 

observations have been drawn.  

 

1. It is observed that increase in the Prandtl number 

decreases the temperature. 

2. It can be seen clearly that the Reynolds number 
decreases the concentration of the fluid. 

3. The heat transfer rate increases as a result of increase in 

radiation and Reynolds parameter. 

4. It is observed that increase in permeability leads to 

increase in the velocity.  

5.  It is noted that increase in the magnetic field leads to 

decrease in the velocity.  

6. It is observed that increase in the Grashoff number 

increases the velocity of the fluid.  

 

REFERENCES 
 

[1]. Ahmed, N. and Sarmah, H. K. (2009). Thermal 

radiation effect on a transient MHD flow with mass 

transfer past an impulsively fixed infinite vertical 

plate.Int.J. of Appl. Math. and Mech., 5(5) 87-98. 

[2]. Alabraba, M. A.;Bestman, A. R. and Ogulu, A. (1992). 

Free convection interaction with thermal radiatin in a 

hydromangetic boundary layer taking into account the 

binary chemical reaction and the less attended Soret 
and Dufour effects.Astrophysics Space Science,195: 

431-445. 

[3]. Alagoa, K. D.; Tay, G. and  Abbey, T. M. (1998). 

Radiative and free convective effects of a MHD flow 

through a porous medium between infinite parallel 

plates with time – dependent suction.” Astrophysics 

and Space Science, 260:455-468. 

[4]. Anghel M., Hossain M. A. andZeb S. (2001). 

Combined heat and mass transfer by free convection 
past an inclined flat plate.Int. J. Appl. Mech. and 

Engg.,2: 473-497. 

[5]. Attia H. A. and Kotb N. A. (1996). MHD flow 

between two with heat transfer parallel 

plates.”,ActaMechanica, 117: 215-220.   

[6]. Bestman, A. R., “Free convection heat transfer to 

steady radiating non – Newtonian MHD flow past a 

vertical porous plate.” Int. J. Numerical Methods in 

engg., 21(2005) 899 – 908. 
 

 

 

[7]. Bhuvaneswari M. and Sivasankaran S., Kim Y. J. 
(2010). Exact analysis of radiation convective flow 

heat and mass transfer over an inclined plate in a 

porous medium.”, World Applied Journal, 10:774-778 

[8]. C.H. Chen, Heat and mass transfer in MHD flow with 

variable wall temperature and concentration, 

ActaMechanica, 172 :219-235. 

[9]. Cess, R. D., “The interaction of thermal radiation with 

free convection heat transfer.(1966).Int. J. Heat and 

Mass Trans.,9:1269-1277. 

[10]. Eckert, E. R. G. and R.M. Drake R. M. (1958). Heat 

and Mass Transfer.”,McGrawHill Book Co., New 

York.  

[11]. Ganesan P and Palani G., “Natural convection effects 

on impulsively started inclined plate with heat and 

mass transfer.Heat and Mass Transfer, 39 (2003) 277-

283. 

[12]. Ganesan P. andPalani G. (2004). Finite difference 
analysis of unsteady natural convection MHD flow 

past an inclined plate with variable surface heat and 

mass flux.Int. J. Heat Mass Transfer, 47:4449-4457. 

[13]. Gersten K. and J.F. Gross J. F. (1974). Flow and heat 

transfer along a plane wall with periodic suction.Z. 

Angew. Math. Phys.,25: 399-408.   

[14]. Ghosh, S. K.; Rawat, S.; Beg, O. A. and Beg, T. A. 

(2010). Thermal radiation effects on unsteady 
hydromagnetic gas flow along an inclined plane with 

indirect natural convection.Int. J. of Appl. Math and 

Mech., 6: 41 – 57. 

[15]. Hossain M. A., I. Pop I. and  Ahmad M. (1996). MHD 

free convection flow from an isothermal plate.”,J. 

Theo. and Appl. Mech., 1: 194-207. 

[16]. Israel-Cookey, C.; Amos, E. and Nwaigwe, C. (2010). 

MHD oscillatory Couette flow of a radiating viscous 

fluid in a porous medium with periodic wall 
temperature. Am. J. Sci. Ind. Res.,1(2) 326 – 331. 

[17]. Jain N. C. and Bansal J. L., “Couette flow with 

transpiration cooling when the viscosity of the fluid 

depends on temperature.”Proc. Ind. Acad. 

Sci.,77(1973), 184-200.  

[18]. Kumar H. (2017). Heat and mass transfer on 

isothermal inclined porous plate in the presence of 

chemical reaction.Int. J. of Pure and App. Math., 

113(5) 523-539. 

[19]. S.A.M. Said, M.A. Habib, H.M. Badr, S. Anwar S. 

(2005). Turbulent natural convection between inclined 

isothermal plates, Computers & Fluid, 34(9) 1025-

1039. 

[20]. Sharma P. R.;Kalpna Sharma and Tripti Mehta 

(2014).Radiative and free convective effects on MHD 

flow through a porous medium with periodic wall 

temperature and heat generation or absorption. Int. J. 

of Math. Arch.,5(9) 119 – 128. 
 

http://www.ijisrt.com/


Volume 5, Issue 1, January – 2020                                               International Journal of  Innovative Science and Research Technology                                                 

                    ISSN No:-2456-2165 

 

IJISRT20JAN647                                                                       www.ijisrt.com                         1139 

[21]. Singh K. D. and Mathew A. (2008). Injection/suction 
effects on an oscillatory hydromagnetic flow in a 

rotating horizontal porous channel.Indian J. 

Phys.,82(4), 435-445.   

[22]. Sparrow E. M. and Husar R. B. (1969). Longitudinal 

vortices in natural convection flow on inclined 

plates.J. Fluid. Mech., 37(2) 251-255. 

[23]. Swapna Y., M. C. Raju and Ram Prakash Sharma 
(2017). Mass transfer effects on MHD mixed 

convective periodic flow through porous medium in an 

inclined channel with transpiration cooling and 

thermal radiation. Jnananbha47(1), 195 – 206. 

 

 

APPENDIX 
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