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Abstract:- A comparative assessment between SIMPLE 

and artificial SIMPLE (ASIMPLE) algorithms is 

conducted based on two-dimensional buoyancy-driven 

incompressible cavity flows, using a cell-centered finite-

volume formulation on a non-orthogonal collocated grid. 

Both methods are characteristically pressure-based; 

however, the ASIMPLE scheme additionally combines 

the concept of artificial compressibility with the 

pressure Poisson equation, provoking density 

perturbations that account for the transformation 

between primitive and conservative variables. An 

improved non-linear momentum interpolation scheme is 

employed at the cell face in discretizing the continuity 

equation, suppressing pressure oscillations effectively. A 

range of values is considered for the thermal Grashof 

number; excellent consistency is obtained between 

results available in the literature and numerical 

solutions adhering to both SIMPLE and ASIMPLE 

solvers. Numerical experiments in reference to 

buoyancy-driven cavity flows dictate that both 

contrivances (e.g., SIMPLE and ASIMPLE) execute a 

residual smoothing enhancement, facilitating an 

avoidance of the velocity/pressure under-relaxation 

(UR). However, compared with the SIMPLE approach, 

included benefits of the ASIMPLE method are the use 

of larger Courant numbers, enhanced robustness and 

convergence. Both procedures adopt an unfactored 

pseudo-time integration scheme and provide identical 

results. 

 

Keywords:- SIMPLE Algorithm, Artificial Compressibility, 
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 Nomenclature 

C = artificial sound speed 

CF L = Courant number 

F, G = flux vectors in x and y directions Gr    = Grashof 

number 

K = viscous flux or dissipation  coefficient 

L = characteristic length 

˙ ∗ 
M = fictitious mass source 

p = static pressure 

p′ = pressure correction or artificial density-change 

p∗ = tentative pressure 

P r = Prandtl number 

Q = source term 

S = cell-face area 

t = time 

T = temperature 

u, v = velocity components in x and y directions 

u′, v′ = velocity corrections u∗, v∗= tentative velocities 

U, V = contravariant or dimensionless velocity components 

W = conservative variable vector 

x, y   = Cartesian coordinates 

Γ         = diffusion coefficient 

η = cell-face damping factor 
θ = dimensionless temperature 

ν = kinematic viscosity 

ρ = density 

φ = scalar transport variable 

∀       = cell volume 

 

Subscript 

ref = reference value 

nb = neighboring grid point 

 

I. INTRODUCTION 
 

Considerable research has been devoted to 

formulating Navier-Stokes (NS) equations, with low Mach 

number and incompressible flows wherein ideas of artificial 

compressibility (AC) are exploited [1–6]. The density-

based (e.g., compressible flow) and the pressure-based (e.g., 

primitive variable formulation) methods are usually used in 

solving the NS equations. In principle, the AC is usually 

well-known as a preconditioned compressible flow scheme 

[1]. 

 
Conventionally, the AC approach applies a time-

derivative of pressure with the continuity equation together 

with a multiplicative parameter recognized as an AC [6], 

allowing the mass continuity to be prosecuted in a time-

marching manner, approximately analogous to the 

momentum equations. However, the AC term plays the key 

role in the evaluation of a credible success and hence, the 

choice of AC variable related to the artificial speed of 

sound has a significant impact on accuracy, stability and 

convergence of numerical methods. In essence,  an 

enhancement in the convergence rate of numerical solver, 

requires  the AC parameter to be automated in the 
computational domain. 

 

On the other hand, the pressure-based method, 

assigned to the pressure-velocity coupling for 

incompressible flows assembles a number of consecutively 

progressive algorithms [7-20]. The methodology herein is 

to devise a second-order Poisson equation for the pressure-

correction resorting to the continuity and momentum 

equations, updating afterwards the pressure and velocity 

fields until the mass continuity is satisfied. This 
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deterministic coupling together with the pressure or 

velocity under-relaxation (UR) is presumably the main 
reason for a slow convergence associated with the SIMPLE 

(Semi-Implicit Methods for Pressure Linked Equations) 

algorithm and its enhanced variants [10, 21, 22]. However, 

the physical motivation of pressure-based method is to 

muster assertively an excluded decoupling of pressure-

velocity fields. Essentially, the major task herein is to 

introduce an accurate amount of cell-face dissipation to 

eliminate the destabilizing effect arising from the pressure 

checker-boarding. A lot of innovative formulations using 

primitive variables have been constructed to surpass the 

difficulties embedded with collocated grid arrangements 

[17-25]. 
 

The SIMPLE algorithm as a pressure-correction 

method is the most common algorithm; it has been used in 

most commercial software, put forwarded by Patankar and 

Spalding [7, 8]. Patankar formulated the SIMPLER 

(SIMPLE REVISED SIMPLE) algorithm [9]; it uses the 

velocity field obtained from the hypothetical or previous 

iteration and an intermediate pressure field directly, instead 

of assuming the pressure field. Van Dooormaal proposed 

SIMPLEC (SIMPLE Consistent) algorithm [10], which 

partially accounts for the influence of surrounding velocity 
nodes, and thus obtaining the improved velocity correction 

equation. Spalding [11], and Markatos and Pericleous [12] 

proposed the SIMPLEST algorithm; Issa et al. [13] and Issa 

[14] proposed PISO algorithm, which includes one 

prediction step and two corrector steps. In addition, ZhiGuo 

proposed the CLEAR (Coupled and linked equation 

algorithm) [15, 16] and Cheng proposed CLEARER 

algorithm [17]. Rahman and Siikonen proposed SIMPLE 

algorithm accompanied by an AC where the continuity 

equation adopts AC form [18]. Rahman et al. [19, 20] also 

improved the pressure-correction method. Compared with 

the traditional SIMPLE algorithm, the robustness and 
convergence of modified SIMPLE algorithm are greatly 

improved. 

 

In particular, on a staggered/collocated grid 

arrangement, the SIMPLE-like procedure commonly 

considers the nodal momentum contributions to design 

influence and cell-face dissipation coefficients in the 

pressure-correction equation. These formulas may 

introduce relatively low weights in the influence 

coefficients, together with an inappropriate mass imbalance, 

which often overestimates the pressure-correction in 
pressure-based algorithms identified by acronyms such as 

SIMPLE, SIMPLER, SIMPLC, etc [7–10]. To counteract 

this adverse situation, the pressure-based method eventually 

confronts pressure or velocity UR, indulging in a 

progressively worse convergence-rate in the case of flows 

with strong source terms. Nevertheless, with the finite-

volume ∆ -formulation, this well-recognized slow 

convergence aspect associated with the SIMPLE approach 

could be reduced to a greater extent. In this formulation, the 

implicit stage conserves the explicit density residual ∆ρ 
(e.g., corrected mass imbalance in the SIMPLE method) as 

a consequence of applying the primitive rather than 

conservative variables. Intuitively, ∆ρ is explored in order 
to smoothen momentum residuals, resulting in presumably 

an avoidance of UR factor in the SIMPLE algorithm. 

 

To this end, it must be stressed that an additional 

improvement is accounted for by com-bining the pressure 

Poisson equation of SIMPLE method with an AC which is 

conducive to magnifying the diagonal dominance of 

influence coefficients. The artificial SIMPLE (ASIM-PLE) 

scheme envisages density perturbations, appearing 

exclusively at the transformation between primitive and 

conservative variables. A revised nonlinear cell-face 

interpolation scheme [20] is applied to eliminate 
nonphysical pressure oscillations. Governing equations  are 

solved in a segregated fashion, relying on diagonal 

dominance for convergence. The overall architecture 

dramatically induces a residual smoothing enhancement, 

thereby facilitating an avoidance of velocity or pressure UR. 

Buoyancy-driven cavity flows could be appropriate 

numerical experiments [26–30] to validate the efficacy and 

accuracy of both SIMPLE and ASIMPLE algorithms. 

 

The ASIMPLE formula is an improved version of 

SIMPLE algorithm developed by Rahman and Siikonen [18] 
wherein the impact of AC is limited to momentum 

equations and the cell-face velocity interpolation technique 

devised by Rahman et al. [20] is modified to suppress the 

local extrema into the tentative cell-face velocity; entailing 

essentially a prerequisite to controlling the velocity or 

pressure UR associated with the SIMPLE method. Note-

worthily, such a SIMPLE algorithm has not, to the authors 

knowledge, to date been formulated to abandon UR factor 

when numerically computing flows with dominant source 

terms in the interest of convergence and robustness, 

pertaining to the SIMPLE scheme. 

 

II. GOVERNING EQUATION 

 

Two-dimensional (2D)  convection-diffusion 

equations with an inclusion of a scalar variable 𝜙 can be 

represented in the following form: 

                  
𝜕𝑊

𝜕𝑡
+

𝜕(𝐹𝑖𝑛𝑣 − 𝐹𝑖𝑣𝑠)

𝜕𝑥
+

𝜕(𝐺𝑖𝑛𝑣 − 𝐺𝑣𝑖𝑠)

𝜕𝑦
= 𝑄                                                         (1)   

where 𝑊 = (𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝜙)𝑇  and Q signifies the source 

term. Inviscid fluxes are: 

 

                 𝐹𝑖𝑛𝑣 = [

𝜌𝑢

𝜌𝑢2 + 𝜌
𝜌𝑢𝑣
𝜌𝑢𝜙

] , 𝐺𝑖𝑛𝑣

= [

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣2 + 𝑝
𝜌𝑣𝜙

]                                                                     (2) 

 

In Equation (2), 𝜌  is the density, 𝑢  and 𝑣  are the 

Cartesian velocity components and 𝑝 implies the pressure. 

Viscous fluxes can be expressed as: 
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            𝐹𝑣𝑖𝑠 = [

0
𝛤(𝜕𝑢/𝜕𝑥)
𝛤(𝜕𝑣/𝜕𝑥)
𝛤(𝜕𝜙/𝜕𝑥)

] , 𝐺𝑣𝑖𝑠

=

[
 
 
 
 
 
 
 

0

𝛤 (
𝜕𝑢

𝜕𝑦
)

𝛤 (
𝜕𝑣

𝜕𝑦
)

𝛤 (
𝜕𝜙

𝜕𝑦
)
]
 
 
 
 
 
 
 

                                                                 (3) 

𝛤  denotes the diffusion coefficient, e.g., either 
viscosity or thermal conductivity of the fluid. 

 

III. FINITE-VOLUME DISCRETIZATION WITH   

Δ-FORMULATION 

 

The governing equations are discretized using a cell-

centered finite-volume scheme, having an integral form 

              
𝑑

𝑑𝑡
∫𝑊
∀

𝑑𝑣 + ∫𝐹
𝑠

(𝑊) ⋅ 𝑑𝑆

= ∫𝑄
∀

𝑑∀                                                                       (4) 

 

for an arbitrary region ∀ with a boundary 𝑆. Carrying out 

the integration for a computational cell 𝑖 yields: 

                ∀
𝑑𝑊𝑖

𝑑𝑡𝑖

= ∑ −
𝑓𝑎𝑐𝑒𝑠

𝑆�̂�

+ ∀ 𝑄𝑖𝑖                                                                                     (5) 

 

where the summation is taken over the computational cell 

faces;  each surface has a unit normal vector n, defined by 

                 𝐧 = 𝑛𝑥𝑖 + 𝑛𝑦𝑗

=
𝑆𝑥

𝑆
𝑖

+
𝑆𝑦

𝑆
𝑗                                                                                    (6) 

with the corresponding cell-face flux: 

                  �̂�
= 𝑛𝑥𝐹
+ 𝑛𝑦𝐺                                                                                                           (7) 

where fluxes F and G are defined by Equations (2) and (3), 

respectively. 
 

In principle, the development of an algebraic equation 

with the ∆ -formulation by Rahman and Siikonen [18], 

linking the dependent variable at the cell-center to 

neighboring dependent variables is reproduced herein to 

accommodate better understanding of the current 

phenomena. Applying a first-order backward difference to 

the variation in W, the implicit time integration adhering to 

Equation (5) can be obtained as: 

                ∀
𝛥𝑊

𝛥𝑡𝑖 + 𝐻𝑖+1/2
𝑛+1 − 𝐻

𝑖−
1
2

𝑛+1 + 𝐻
𝑗+

1
2

𝑛+1 − 𝐻
𝑗−

1
2

𝑛+1

= ∀ 𝑄𝑖𝑖                                              (8) 

 

where 𝐻 = 𝑆�̂� , 𝛥𝑊 = 𝑊𝑛+1 − 𝑊𝑛  and the term 𝐻𝑛+1  is 

linearized with respect to 𝑡 as: 

                 𝐻𝑛+1 ≈ 𝐻𝑛 +
𝜕𝐻

𝜕𝑊
𝛥𝑊                                                                                                (9) 

 

Substituting Equation (9) into Equation (8) provides 

an implicit pseudo-time step relation after some 

manipulations: 

𝛥𝑊�̃� +
𝛥𝑡𝑖
𝑉𝑖

(𝑈𝛥�̃�𝑆 − 𝐾𝜕𝛥�̃�)
𝑖−

1
2

𝑖+
1
2 +

𝛥𝑡𝑖
𝛥∀𝑖

(𝑉𝛥�̃�𝑆

− 𝐾𝜕�̃�)
𝑗−

1
2

𝑗+
1
2 = 𝛥𝑊𝑖

∗̃                        (10) 

 

In the above-mentioned relation: 

𝛥𝑊𝑖
∗̃ =

1

𝜌𝑖

(𝛥𝑊𝑖 − 𝑊�̃�𝛥𝜌𝑖),  𝛥𝑊𝑖 =
𝛥𝑡𝑖
∀𝑖

𝑅𝑖 ,     �̃� = (𝑢, 𝑣, 𝜙)𝑇

                                   (11) 

               𝑅𝑖

= −(𝐻
𝑖+

1
2

𝑛+1 − 𝐻
𝑖−

1
2

𝑛+1 + 𝐻
𝑗+

1
2

𝑛+1 − 𝐻
𝑗−

1
2

𝑛+1)

+ ∀ 𝑄𝑖                 𝑖                                (12) 

 

where ∂i±1/2 and ∂j1±1/2 are the first-order spatial difference 

operators and 

                𝑈𝑖±1/2 = (𝑢𝑛𝑥 + 𝑣𝑛𝑦)
𝑖±

1
2
  𝑉

𝑗±
1
2

= (𝑢𝑛𝑥 + 𝑣𝑛𝑦)
𝑗±

1
2
                                     (13) 

 

are the contravariant velocity components in the i-

direction and j-direction, respectively. The implicit stage 

preserves the explicit density residual ∆ ρ (e.g., mass 

imbalance generated by corrected velocity fields) as a result 
of using the primitive rather than conservative variables. 

Evidently, ∆ρ is explored in order to linearize the residuals, 

resulting in presumably an avoidance of the velocity or 

pressure UR which is an expensive component in the 

SIMPLE algorithm. The elimination of UR factor 

dramatically improves numerical convergence and provides 

a significant reduction in the computational time. 

 

In particular, a fully upwind second-order (FUS) 

difference is utilized to approximate the convective flux 

residual on the right-hand side of Equation (10). A stable 
solution with the FUS  scheme is obtained since it applies 

only upwind terms to extrapolate the cell face value [30]. 

To account for the directional impact on the upwinding 

process, the inviscid flux at the cell face (𝑖 + 1/2) 
associated with 𝑅𝑖  in Equation (12) is evaluated using a 

rotational matrix [18]. A standard first-order upwind is 

employed to evaluate the coefficient matrix. Therefore, the 

convective flux on the cell face (𝑖 + 1/2) for the implicit 

part can be given as: 

                  (�̇�𝛥�̃�)
𝑖+

1
2

= �̇�
𝑖+

1
2

+ 𝛥�̃�𝑖

− �̇�
𝑖+

1
2

− 𝛥�̃�𝑖+1                                                                (14) 
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where �̇�  is the volume flow-rate across the cell face, 

defined as follows: 

      𝑀̇ 𝑖+1/2 = (𝑈𝑆)
𝑖+

1

2
, �̇�

𝑖+
1

2

+ = 𝑚𝑎𝑥(�̇�
𝑖+

1

2
, 0), �̇�

𝑖+
1

2

− =

𝑚𝑎𝑥 (−�̇�
𝑖+

1

2
, 0)                (15) 

 

Similar approximations are valid for other cell faces. 

 

Collecting together relations like Equations (14) and 

(15) in Equation (10), a system of algebraic equations can 

be obtained as: 

                        𝐴𝑖𝛥�̃�𝑖

= ∑𝐴𝑛𝑏

𝑛𝑏

𝛥�̃�𝑛𝑏

+ 𝛥�̃�𝑖
∗                                                                        (16) 

with 

                                    𝐴𝑖

= 1 + ∑𝐴𝑛𝑏

𝑛𝑏

+ |�̇�𝑖|                                                                        (17) 

∑𝐴𝑛𝑏

𝑛𝑏

= 𝐴𝑖+1 + 𝐴𝑖−1 + 𝐴𝑗+1 + 𝐴𝑗−1 

�̇�𝑖 =
𝛥𝑡𝑖
∀𝑖

(𝑀𝑖+1/2 + 𝑀𝑖−1/2 + Mj+1/2 + 𝑀𝑗−1/2) 

where 

                 𝐴𝑖+1 =
𝛥𝑡𝑖
∀𝑖

(𝐾
𝑖+

1
2
+ �̇�

𝑖+
1
2

− )  𝐴𝑖−1

=
𝛥𝑡𝑖
∀𝑖

(𝐾
𝑖−

1
2
+ �̇�

𝑖−
1
2

+ )                  (18)   

𝐴𝑗+1 =
𝛥𝑡𝑗
∀𝑗

(𝐾
𝑗+

1
2
+ �̇�

𝑗+
1
2

− )  𝐴𝑗−1

=
𝛥𝑡𝑗
∀𝑗

(𝐾
𝑗−

1
2
+ �̇�

𝑗−
1
2

+ )   

Ki±1/2 = (
Γ𝑆

𝜌Δ𝑛
)

𝑖±1/2
,                            Δ𝑛

i±
1

2
=

∀𝑖 +∀𝑖±1/2

2𝑆
i±

1
2

 

Kj±1/2 = (
Γ𝑆

𝜌Δ𝑛
)
𝑗±1/2

,                            Δ𝑛
j±

1

2
=

∀𝑖 +∀𝑖±1/2

2𝑆
j±

1
2

 

 

where the diffusion term 𝐾  is approximated using a 

symmetric linear profile, 𝛥𝑛𝑖±1/2 and 𝛥𝑛𝑗±1/2 are distances 

between cell centers in the 𝑖-and 𝑗-directions, respectively; 

𝑛𝑏 stands for a run over neighboring nodes (𝑖 + 1), (𝑖 −
1) , (𝑗 + 1) , and (𝑗 − 1) . After the implicit stage, the 

solution vector �̃� is updated from: 

                           �̃�𝑖
𝑛+1

= �̃�𝑖
𝑛 + 𝛥�̃�𝑖                                                                      (19) 

Equation (19) represents tentative velocity components 

with an arbitrary pressure field. 

 
A. Artificial SIMPLE (ASIMPLE) method 

In the SIMPLE algorithm, converged solutions to mass and 

momentum conservation laws can be achieved after 

repeated iterations for tentative velocity and pressure fields. 

The velocity and pressure fields are corrected as (for 

convenience, only u and p are considered): 

                                𝑢
= 𝑢∗ + 𝑢′                                                                            (20) 

                               𝑝
= 𝑝∗ + 𝑝′                                                                              (21) 

 

where u′ and p′ represent incremental velocity and 

pressure, respectively. Quantities u∗ and p∗ are the tentative 

values. The velocity-correction can be linked to the 

pressure-correction on a curvilinear coordinate system by 

[18]: 

                      𝑢𝑖

= 𝑢𝑖
∗

−
𝛥𝑡𝑖

′

𝜌

(𝑆𝑛𝑥𝜕𝑝′)𝑖 + (𝑆𝑛𝑥𝜕𝑝′)𝑗

∀𝑖

                                       (22) 

with 

                       
(𝑆𝑛𝑥𝜕𝑝′)𝑖

∀𝑖

≈

(𝑛𝑥𝑝
′)

𝑖+
1
2
− (𝑛𝑥𝑝

′)
𝑖−

1
2

𝛥𝑛𝑖

                                         (23) 

                    
(𝑆𝑛𝑥𝜕𝑝′)𝑗

∀𝑖

≈

(𝑛𝑥𝑝
′)

𝑗+
1
2
− (𝑛𝑥𝑝

′)
𝑗−

1
2

𝛥𝑛𝑗

                                           (24) 

 

where 𝛥𝑡𝑖
′ is a fictitious time step (e.g., a weighting 

factor); 𝛥𝑛𝑖 and 𝛥𝑛𝑗  are the control-volume cell thicknesses 

in 𝑖  and 𝑗  directions, respectively. The cell face value of 

pressure-correction 𝑝′ is obtained  as an average from two 

adjacent nodal points. 

 

Within the framework of traditional AC method, the 

continuity equation is modified by introducing an artificial 

time-derivative of pressure [18]: 

                   
1

𝐶2

𝜕𝑝

𝜕𝑡
+ 𝜌

𝜕𝑢

𝜕𝑥
+ 𝜌

𝜕𝑣

𝜕𝑦
= 0                                                                         (25) 

 

where 𝐶  is the artificial sound speed, optimized 

numerically as : 

                     𝐶

= √𝑚𝑎𝑥[(𝑢2 + 𝑣2 + 𝛽),
1

2
𝑈𝑟𝑒𝑓

2 ]                                                    (26) 

 

where 𝛽 = 10 and 𝑈𝑟𝑒𝑓 is the reference velocity. 

The finite-volume discretization of Equation (25) results in: 

                     
∀𝑖

𝐶𝑖
2𝛥𝑡𝑖

𝑝𝑖
′ + (𝜌𝑈∗𝑆)

𝑖−
1
2

𝑖+
1
2 + (𝜌𝑉∗𝑆)

𝑗−
1
2

𝑗+
1
2

= 0                                        (27) 

 

Substituting relations like Equation (22) into Equation 
(27) leads to a truncated pressure-correction relation: 

                         𝐵𝑖𝑝𝑖
′

= ∑𝐵𝑛𝑏

𝑛𝑏

𝑝𝑛𝑏
′ − �̇�𝑖

∗                                                               (28) 

where 
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𝐵𝑖 =
∀𝑖

𝐶𝑖
2𝛥𝑡𝑖

+ ∑𝐵𝑛𝑏

𝑛𝑏

 ∑𝐵𝑛𝑏

𝑛𝑏

= 𝐵𝑖+1 + 𝐵𝑖−1 + 𝐵𝑗+1 + 𝐵𝑗−1                              (29)      

= (
𝛥𝑡′𝑆

𝛥𝑛
)

𝑖+
1
2

                        

𝐵𝑖−1 = (
𝛥𝑡′𝑆

𝛥𝑛
)

𝑖−
1
2

𝐵𝑗+1 = (
𝛥𝑡′𝑆

𝛥𝑛
)

𝑗+
1
2

  𝐵𝑗−1

= (
𝛥𝑡′𝑆

𝛥𝑛
)

𝑗−
1
2

 

 

where �̇�𝑖
∗ represents the fictitious mass source, given 

by: 

                                    𝑀𝑖
∗̇

= �̇�
𝑖+

1
2

∗ − �̇�
𝑖−

1
2

∗ + �̇�
𝑗+

1
2

∗ + �̇�
𝑗−

1
2

∗                                     (30) 

�̇�
𝑖+

1
2

∗ = (ρU∗𝑆)
𝑖+

1
2
     �̇�

𝑖−
1
2

∗ = (ρU∗𝑆)
𝑖−

1
2
  

�̇�
𝑗+

1
2

∗ = (ρU∗𝑆)
𝑗+

1
2
     �̇�

𝑗−
1
2

∗ = (ρU∗𝑆)
𝑗−

1
2
  

 

Note that cross-diffusion fluxes in Equation (28) are 

neglected with a thin-layer-type approximation, frequently 

used due to maintaining diagonally dominant coefficient 

matrices [18, 19]. Obviously, the physical relevance of the 

first term on the left-hand side in Equation (25) is to add 

more weight on the diagonal of nodal coefficients, allowing 
the use of a higher CFL number and thereby, enhancing the 

convergence acceleration. Conspicuously, the SIMPLE 

algorithm is obtained with an exclusion of the first term 

from Equation (29). 

 

B. Time step and weighting factor 

Time step 𝛥𝑡  define is evaluated from the relation 

[18]: 

𝛥𝑡𝑖 = 𝑚𝑖𝑛

[
 
 
 

𝐶𝐹𝐿∀𝑖

(|𝑈|𝑆)𝑖(|𝑉|𝑆)𝑗 + 𝐶𝑖√𝑆𝑖
2 + 𝑆𝑗

2

,
𝐿2

2𝑘𝑣𝑖

]
 
 
 

 𝐿

= min(𝛥𝑛𝑖 , 𝛥𝑛𝑗)           (31) 

 

where 𝑘 = 2. Grid properties at (𝑖, 𝑗) are interpolated 

from cell faces.  Values of CFL in the range 1-20  are 

recommended by the current implicit solvers,  

accommodating  better convergence to the steady state at 
which the fictitious/artificial mass conservation is enforced. 

 

The weighting factor 𝛥𝑡′ involved in the velocity-pressure 

correction equation may be evaluated in many ways [19]. 

In the present study, 𝛥𝑡′ is determined from Equation (17) 

as: 

               𝛥𝑡𝑖
′ = 𝑚𝑖𝑛(1, 𝐶𝐹𝐿)

𝛥𝑡𝑖
𝐴𝑖

  𝐴𝑖

= ∑𝐴𝑛𝑏

𝑛𝑏

                                                (32) 

where the coefficient 𝐴𝑖  emerges naturally from a 

consequence of the momentum equations. The choice of 

𝛥𝑡′ is an additional criterion to eradicate the presence of 
UR factor in the SIMPLE-like algorithm. 

 

C. Cell face velocity 

On a collocated grid, a linear approximation for the 

cell-face velocity induces a  checkerboard pressure mode, 

reflecting the pressure-velocity decoupling. Unfortunately, 

the discrete form of momentum equations cannot detect the 

unrealizable components, remaining until the iterative 

process converges. To avoid this occurrence, an improved 

Rhie-Chow [24]  interpolation method developed by 

Rahman and Siikonen [20]  is adopted. To revive the 

formulation explicitly, the calculation of 𝑢𝑖−1/2
∗  is discussed 

herein. Using Equation (17) the velocity components 𝑢𝑖−1
∗ , 

𝑢𝑖
∗  and 𝑢𝑖−1/2

∗  comply with the discretized momentum 

equations: 

    𝑢𝑖−1
∗ +

∀𝑖−1

𝐴𝑖−1

(
𝜕𝑝∗

𝜕𝑥
− 𝑓𝑢)

𝑖−1
=

∑ 𝐴𝑛𝑏𝑖−1 𝑢𝑛𝑏
∗

𝐴𝑖−1

                                    (33)

𝑢𝑖
∗ +

∀𝑖

𝐴𝑖

(
𝜕𝑝∗

𝜕𝑥
− 𝑓𝑢)

𝑖
=

∑ 𝐴𝑛𝑏𝑖 𝑢𝑛𝑏
∗

𝐴𝑖

                                         (34)

𝑢𝑖−1/2
∗ +

∀𝑖−1

𝐴𝑖−1/2

(
𝜕𝑝∗

𝜕𝑥
− 𝑓𝑢)

𝑖−1/2
=

∑ 𝐴𝑛𝑏𝑖−1/2 𝑢𝑛𝑏
∗

𝐴𝑖−1/2

                                  (35)

 

 

where 𝑓𝑖
𝑢 , 𝑓𝑖−1/2

𝑢  and 𝑓𝑖−1
𝑢  represents the non-pressure 

gradient source terms. The right-hand side of Equation (35) 

can be obtained using a linear interpolation of 

corresponding terms in Equations (33) and (34) as follows : 

 

 

𝑢𝑖−1/2
∗ =

1

2
(𝑢𝑖−1

∗ + 𝑢𝑖
∗)     𝐶𝑖−1/2 = 

∀𝑖−1/2

𝐴𝑖−1/2

 

=
1

2
(
∀𝑖−1

𝐴𝑖−1

+
∀𝑖

𝐴𝑖

)
𝑖−1

    

At point (𝑖 − 1/2), Taylor series expansion can be used to 

obtain the following formulas: 

(
𝜕𝑝∗

𝜕𝑥
)

𝑖

= (
𝜕𝑝∗

𝜕𝑥
)

𝑖−1/2
+

𝛥𝑥𝑖−1/2

2
(
𝜕2𝑝∗

𝜕𝑥2
)

𝑖−1/2

+
𝛥𝑥𝑖−1/2

2

8
(
𝜕3𝑝∗

𝜕𝑥3
)

𝑖−1/2

+ ⋯   (37) 

                                𝑓𝑖
𝑢 = 𝑓𝑖−1/2

𝑢 +
𝛥𝑥𝑖−1/2

8
(

𝜕𝑓𝑢

𝜕𝑥
)

𝑖−1/2
+ ⋯                                          

(38) 

(
𝜕𝑝∗

𝜕𝑥
)

𝑖−1

= (
𝜕𝑝∗

𝜕𝑥
)

𝑖−1/2
+

𝛥𝑥𝑖−1/2

2
(
𝜕2𝑝∗

𝜕𝑥2
)

𝑖−1/2

+
𝛥𝑥𝑖−1/2

2

8
(
𝜕3𝑝∗

𝜕𝑥3
)

𝑖−1/2

+ ⋯ (39) 
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                  𝑓𝑖−1
𝑢

= 𝑓𝑖−1/2
𝑢 −

𝛥𝑥
𝑖−

1
2

8
(
𝜕𝑓𝑢

𝜕𝑥
)

𝑖−
1
2

+ ⋯                                           (40) 

Multiplying Equations (37) and (38) by ∀ /𝑖 𝐴𝑖 , and 

Equations (39) and (40) by ∀ /𝑖−1 𝐴𝑖−1 yields: 
1

2
[
∀𝑖−1

𝐴𝑖−1

(
𝜕𝑝∗

𝜕𝑥
− 𝑓𝑢)

𝑖−1
+

∀𝑖

𝐴𝑖

(
𝜕𝑝∗

𝜕𝑥
− 𝑓𝑢)

𝑖
]

− 𝐶
𝑖−

1
2
(
𝜕𝑝∗

𝜕𝑥
− 𝑓𝑢)

𝑖−
1
2

= −

Δ𝑥
𝑖−

1
2

4
 (

∀𝑖

𝐴𝑖

−
∀𝑖−1

𝐴𝑖−1

) (
𝜕𝑓𝑢

𝜕𝑥
)

𝑖−
1
2

+ |

Δ𝑥
𝑖−

1
2

2 𝐶
𝑖−

1
2

8
(
𝜕3𝑝∗

𝜕𝑥3
)

𝑖−
1
2

              (41) 

 

assuming that the pressure at the cell face is obtained 

from a linear interpolation between grid nodes. Therefore, 

the impact of the following term 

                          

Δ𝑥
𝑖−

1
2

4
 (

∀𝑖

𝐴𝑖

−
∀𝑖−1

𝐴𝑖−1

)(
𝜕2𝑝∗

𝜕𝑥3
)

𝑖−
1
2

                                                          

on the overall scheme is insignificant. Combining Equation 
(41) with Equation (36) provides for: 

                     𝑢𝑖−1/2
∗

= 𝑢𝑖−1/2
∗

− (𝐾
𝜕𝑓𝑢

𝜕𝑥
)

𝑖−
1
2

+ (𝑅
𝜕3𝑝∗

𝜕𝑥3
)

𝑖−
1
2

                                  (42) 

where 

Ki−1/2 =

Δ𝑥
𝑖−

1
2

4
 (

∀𝑖

𝑎𝑖

−
∀𝑖−1

𝐴𝑖−1

),      𝑅𝑖−1/2 =

Δ𝑥
𝑖−

1
2

2 𝐶
𝑖−

1
2

8
 

In the current research, Equation (42) is modified that 

guarantees no local extrema into the cell-face velocity. This 

is appropriately preserved by the following explicit 

reconstruction: 

u𝑖−1/2
∗ = 𝑢𝑖−1/2

∗
− 𝜂

𝑖−
1

2

{𝐾
𝑖−

1

2

𝜕𝑓𝑢

𝜕𝑥
|
𝑖−

1

2
− 𝐶

𝑖−
1

2

[
1

2
(

𝜕𝑝∗

𝜕𝑥
|𝑖−1 +

𝜕𝑝∗

𝜕𝑥
|𝑖) −

𝜕𝑝∗

𝜕𝑥
|
𝑖−

1

2

]}        (43) 

where 

𝜂𝑖−1/2 =

ζ
i−

1
2

2

1 + ζ
i−

1
2

2 ,          ζ
i−

1
2

=

Δ𝑥
𝑖−

1
2
𝑢

𝑖−
1
2

∗

𝜈𝑖−1/2

 

 

where 𝜈  is the kinematic viscosity. Discernibly, the 

damping term (can actually be interpreted as a correction to 

the central difference scheme) involved in Equation (43) 

has several desirable attributes when compared with the 

Rhie-Chow [24] cell-face interpolation scheme: (a) it is not 

dependent on UR factors; (b) the frame-work constitutes a 

compact formulation; (c) the included non-pressure 

gradient source term influences the stability of solution [20] 

and (d) the magnitude of cell-face dissipation is bounded 

due to the presence of damping coefficient 𝜂 . Thus, the 

formulation has a compatible competency in eliminating 

the checkerboard pressure mode in fluid flow and heat 

transfer problems with strong source terms. 

 

D. Solution vector fields  

Incorporating an AC parameter in the pressure-

correction equation, invokes modified-correction 

phenomena in the actual SIMPLE algorithm, resulting in an 

ASIMPLE method. This is constructed such as to expedite 

an enhancement in the residual smoothing properties. 
Conservative corrections can be recovered by allowing an 

artificial change in density subjected to: 

                                                     𝜌′

=
𝑝′

𝐶2
                                                                                 (44) 

which leads to the following linearizations: 

                          𝛥𝜌𝑢∗ = 𝜌𝑢′ + 𝜌′𝑢∗, 𝛥𝜌𝑣∗

= 𝜌𝑣′ + 𝜌′𝑣∗                                             (45)  

 

Remarkably, the artificial density change 𝜌′ implicitly 

accounts for the effect of fictitious mass imbalance. 

Corrected primitive variables are achieved as follows: 

                              (𝑢, 𝑣)𝑇

= (𝑢∗, 𝑣∗)𝑇

+
1

𝜌
(𝛥𝜌𝑢∗, 𝛥𝜌𝑣∗)𝑇                                              (46) 

 

Undoubtedly, 𝑝′  can be recognized as the density 

preconditioning or perturbation to the incompressible limit, 

convoking an explicit definition of the fluid constitutive 

relation which leads to a transformation between 

conservative and primitive variables. Consequently, a 

consistent control over changes in dependent variables is 
obtained, resulting in an enhanced robustness of the solver. 

Comparing Equation (20) with Equation (46) advocates that 

the velocity corrections are modified; however, as the 

solution converges to the steady state, the density 

perturbation disappears. The physical rationale with the 

ASIMPLE approach is that it imitates the characteristics of 

pseudo-compressibility to solve the incompressible 

equations. 

 

To this end, it is appropriate to emphasized herein that 

the system is pressure based. Compared with the ASIMPLE 
method proposed by Rahman and Siikonen , the current 

ASIMPLE algorithm involves the artificial density change 

with momentum equations only. Since the participation of 

𝑝′  in the scalar equation entangles non-physical scalar 

results when considering flow regimes ranging from highly 

diffusive to convection dominated; for instance, viscosity-

driven and buoyancy-driven cavity flows. 

 

E. Boundary conditions 

The boundary-treatment must be consistent with the 

numerical scheme; since boundary conditions are very 
critical/sensitive to accuracy and robustness of any 

numerical scheme. Two layers of ghost cells are set to 
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boundaries and boundary conditions are provided in ghost 

cells. However, actual boundary conditions are recovered 
when a central difference scheme is applied. For a 

boundary cell face (𝑖 − 1/2) , Dirichlet and Neumann 

conditions are approximated as follows: 

               �̃�𝑖−1 = 2�̃�𝑖−1/2 − �̃�𝑖 ,  �̃�𝑖−1

= �̃�𝑖 − (𝛥𝑛
𝜕�̃�

𝜕𝑛
)

𝑖−
1
2

                           (47) 

where (𝑖 − 1)  represents a ghost cell nodal point and 

�̃�𝑖−1/2 or (𝜕�̃�/𝜕𝑛) is the specified boundary value.  The 

wall viscous flux is determined using a second-order one-

sided formula and the wall pressure is evaluated using a 

second-order extrapolation from the computational domain. 

In the initial iteration step, 𝛥�̃�𝑖−1 = 0 . Boundary 

conditions of the pressure-correction are treated implicitly 

as follows. In the ghost cell, Equation (28) becomes: 

                                           𝐵𝑖−1𝑝𝑖−1
′

= 𝐵𝑖𝑝𝑖
′                                                                     (48) 

 

where Dirichlet and Neumann boundary conditions 

assume that 𝐵𝑖 = 0  and 𝐵𝑖−1 = 𝐵𝑖 , respectively. This 

strategy accelerates the convergence speed of algorithm. 

 

F. Steps of algorithm 

Equations are solved with a tridiagonal matrix 
algorithm (TDMA); different steps of the solver can be 

summarized as follows: 

 Guess pressure, velocity, and scalar fields. 

 Solve momentum equations and calculate tentative 

velocity fields 𝑢∗ and 𝑣∗ using Equation (19). 

 Calculate �̃�𝑖±1/2
∗ , using relations like Equation (43) to 

form the mass imbalance �̇�𝑖
∗ and solve Equation (28) 

for 𝑝′. 

 Construct conservative correction terms using Equation 

(45). 

 Update velocity, pressure and scalar fields. 

 Repeat steps 2-5 until convergence is attained. 

 

IV. NUMERICAL EXPERIMENTS 
 

In order to make a realistic assessment between 
SIMPLE and ASIMPLE algorithms, numerical experiments 

are carried out for buoyancy-driven flows in a square cavity 

and a half-concentric annulus, respectively. Both cases are 

probably the most conventional computational experiments, 

retaining strong source terms to validate the predictive 

performance of a numerical formulation. Since there are no 

analytic solutions available to these problems, literature 

data  and results of the control-volume-based finite-element 

method (CVFEM) with vorticity stream function 

formulation  are considered as standards for estimating the 

accuracy of computations obtained by the proposed 
methods. 

 

The computational system has a characteristic length 

of 𝐿 with insulated top and bottom walls. The hot and cold 

vertical walls are both isothermal, having temperatures 𝑇ℎ 

and 𝑇𝑐 , respectively. The fluid is incompressible with 

constant properties except for the density variation in the 

buoyant force; the usual Boussinesq approximation is 
introduced. The overall system of equations, comprising 

continuity, X-momentum, Y-momentum and energy can be 

written in Cartesian coordinates for a two-dimensional case 

as follows: 

                                                   
∂U

∂τ
+

𝜕𝑉

𝜕𝑌
= 0                                                                          (49) 

                                
∂U

∂τ
+

𝜕

𝜕𝑋
(𝑈𝑈 −

∂U

∂X
) +

𝜕

𝜕𝑌
(𝑉𝑈 −

𝜕𝑈

𝜕𝑌
)

= −
𝜕𝑃

𝜕𝑋
                              (50) 

                               
∂V

∂τ
+

𝜕

𝜕𝑋
(𝑈𝑉 −

∂V

∂X
) +

𝜕

𝜕𝑌
(𝑉𝑉 −

𝜕𝑉

𝜕𝑌
)

= 𝐺𝑟𝜃 −
𝜕𝑃

𝜕𝑌
                       (51) 

                               
∂θ

∂τ
+

𝜕

𝜕𝑋
(𝑈𝜃 −

1

𝑃𝑟

∂θ

∂X
)

+
𝜕

𝜕𝑌
(𝑉𝜃 −

1

𝑃𝑟

𝜕𝜃

𝜕𝑌
) = 0                             (52) 

 

In the above-mentioned Equations (49-52), all 

variables are non-dimensionalized using dimensionless 
parameters, defined as: 

X =
x

L
;                             𝑌 =

𝑦

𝐿
;                            𝑈 =

𝑢𝐿

𝜈
 

                             V =
μL

ν
;                          𝑃

=
pL2

𝜌𝜈2
;                        𝜏 =

𝜈𝑡

𝐿2
                       (53) 

θ =
T − Tc

𝑇ℎ − 𝑇𝑐

;        𝐺𝑟 =
𝑔𝛽(𝑇ℎ − 𝑇𝑐)𝐿

3

𝜈2
;            𝑃𝑟 =

𝜈

𝛼
  

 

The selected problems are governed by two 

dimensionless parameters: Grashof number 𝐺𝑟 and Prandtl 

number 𝑃𝑟 . The parameters 𝑔 , 𝜈 , 𝛼  and 𝛾  are the 

gravitational acceleration, kinematic viscosity, thermal 

diffusivity and coefficient of thermal expansion, 

respectively. In the current computations, Pr is set to unity. 

The dimensional reference velocity can be evaluated as 

𝛹 = √𝑔𝛾(𝑇ℎ − 𝑇𝑐)𝐿 = 𝜈√𝐺𝑟/𝐿 . Therefore, the 

dimensionless reference velocity defined herein is 𝑈𝑟𝑒𝑓 =

𝛹𝐿/𝜈 = √𝐺𝑟. In principle, the buoyancy-driven flow in a 
square cavity/half-concentric annulus represents a good test 

case for the general applicability of a solver, retaining both 

highly diffusive central and convective near-wall flows. 

 

It is worth noting that the SIMPLE method evaluates 

the time step 𝛥𝑡 from Equation (31) with an exclusion of 

the artificial sound speed 𝐶  and calculates the weighting 

factor 𝛥𝑡′ from Equation (32) with 𝐶𝐹𝐿 = 1. An important 

parameter to judge the convergence of SIMPLE algorithm 
is the average mass residual in the computational domain, 

which can be expressed as: 

                                     𝛥𝜌∗

= √
∑ |𝑁𝑃

𝑖=1 �̇�𝑖
∗|2

𝑁𝑃
≤ 𝜁𝑡                                                                 (54) 
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where NP is the number of computational cell, and 𝜁𝑡 
is the user-defined tolerance limit. For the ASIMPLE 

algorithm, the cell mass imbalance �̇�𝑖
∗ in Equation (31) is 

replaced by the artificial mass imbalance 𝑝𝑖
′/𝐶𝑖

2. For each 

computational grid, the maximum possible CFL number is 

approximated, enhancing the fastest convergence. Each 

computational test case uses a variable grid spacing to 

resolve the sharp gradients in near-wall regions. Grid 
densities (not shown) are varied to guarantee the grid 

independence of numerical results; numerical errors due to 

the grid size is estimated as less than 2%, based on grid 

dependence tests for both velocity and temperature fields. 

 

Since the buoyancy source term 𝑓𝑉 = 𝐺𝑟 𝑇  in 

Equation (51) is positive; its linearization is not possible. 

However, the stiffness caused by 𝑓𝑉  can be reduced by 

applying the pseudo-linearization: 

                                                   
∂fV

𝜕𝑉

= −
𝑓𝑉

|Δ𝑉𝑚𝑎𝑥|
                                                                  (55) 

 

Thus the maximum change in 𝑉  induced by 𝑓𝑉  is 

limited to |𝛥𝑉𝑚𝑎𝑥| . The maximum change relating to 
|𝛥𝑉𝑚𝑎𝑥| can be estimated by utilizing the current value of 𝑉 

as: 

                                                  |Δ𝑉𝑚𝑎𝑥|

=
V

CT

                                                                       (56) 

where the value of 𝐶𝑇  is set to max(1;𝐶𝐹𝐿)  after test 

calculations. The local Nusselt number can be evaluated as 

follows: 

                                                     𝑁𝑢

= −
𝜕𝑇

𝜕𝑋
|𝑋=0                                                                (57) 

where 𝜕𝑇/𝜕𝑋  is approximated using a three-point one-

sided difference. To this end, it must be stressed that both 

SIMPLE and ASIMPLE algorithms uproot the well-

recognized velocity or pressure UR to correct the respective 
fields. 

 

A. Buoyancy-driven flow in square cavity 

Figure 1 shows a schematic diagram of the natural 

convection in a square cavity. The characteristic length is L 

with adiabatic top and bottom walls; left and right vertical 

walls are hot and cold, respectively, having constant 

temperatures Th and Tc. The overall system of equations in 

non-dimensional form for the two-dimensional case is 

given earlier in Equations (49-52). Boundary conditions are 

as follows: U = V = 0 on all walls, θ = 1.0 on the left wall, 

θ = 0 on the right wall and ∂θ/∂Y = 0 on top and bottom 
walls. 

 

 
Fig 1:- Physical model of buoyancy-driven cavity flow. 

 

32 × 32 non-uniform grid for Gr = 105, 40 × 40 for Gr = 106 and 60 × 60 for Gr = 107, retaining finer grid points near the 

walls than in the core, are employed for computations. This range of flows is selected with a view to evaluating the performance 

of proposed algorithms on highly diffusive to convection dominated flow regimes. Plots of vertical velocity and temperature 

profiles at the horizontal centerline of cavity are presented at different Gr’s in Figures 2 and 3, respectively under same initial 

conditions. The semi-implicit solutions based on the characteristic-based split algorithm by Massarrotti et al. [30] and CVFEM 

computational data [31, 32] are also included in the plots. As is observed, comparisons exhibit an encouraging qualitative 

agreement. Figure 4 depicts local Nusselt number distributions along the hot vertical wall for various Grashof numbers. A careful 

inspection shows that the SIMPLE method is in excellent agreement with the ASIMPLE algorithm. 
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Fig 2:- Velocity profiles on horizontal midplane for buoyancy-driven cavity flow. 

 

 
Fig 3:- Temperature profiles (𝜃 = 𝑞) on horizontal midplane for buoyancy-driven cavity flow. 

 

 
Fig 4:- Local Nusselt number along hot wall for buoyancy-driven cavity flow. 

 

Shown in Figure 5 are the velocity contours for two algorithms at different Grashof numbers. Consistent with velocity and 

temperature profiles as demonstrated in Figures 2 and 3, boundary-layer edges move toward the wall and the area of central flow-

cavity increases with increasing Gr. Interestingly, the influence of secondary flows is very clear when investigating the reasonable 

distortion near upper left and lower right corners of velocity plots at a higher Gr. Evidently, for these particular grid refinements, 

solutions from both algorithms are favorably comparable to each other; differences are almost indistinguishable. 

 

 

 
(a) GR = 105: ASIMPLE                                                (b) GR = 105: SIMPLE 
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(c) GR = 106: ASIMPLE                                               (d) GR = 106: SIMPLE 

 
(e) GR = 107: ASIMPLE                                              (d) GR = 106: SIMPLE 

Fig 5:- Velocity contours for buoyancy-driven cavity flow. 

 

Figure 6 displays the convergence histories of fictitious/artificial mass residuals at different Grashof numbers with the same 

initial conditions. Observed fluctuations in the mass imbalance profiles could be presumably due to the pseudo-linearization of 
positive strong buoyant source with the CFL numbers. However, mass residuals of both schemes drop to a lower state for a given 

number of iteration cycles. Although, the mass imbalance has different interpretations in SIMPLE and ASIMPLE algorithms, it is 

obvious that the ASIMPLE method can consume a higher CFL number than that of the SIMPLE scheme to achieve faster 

convergence. Convergence plots unambiguously confirm the conclusion that both methods work effectively toward avoiding the 

unwanted oscillations even at a higher Gr without employing velocity and pressure UR factors. 

 

 
(a) (b)                                       (c) 

Fig 6:- Convergence histories of mass residuals (∆𝜌∗ = 𝐷𝑟∗)   for buoyancy-driven cavity flow. 

 

B. Buoyancy-driven flow in an annulus 

A schematic of the half-concentric annulus is shown in Figure 7. The radii of inner and outer surfaces are designated by Ri 

and Ro, respectively, with Ro/Ri = 3. The origin of Cartesian coordinate is situated at the center of circles. The geometry has a 

characteristic length L = Ro − Ri with insulated top and bottom vertical walls. The inner and outer curved surface temperatures 

are held at Th and Tc, respectively with Th > Tc. Governing equations and boundary conditions are equivalent to those applied for the 

buoyancy-driven square-cavity flow. 
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Fig 7:- Physical model of buoyancy-driven flow in annulus. 

 
Tamamidis et a. [23] have made an assessment between the SIMPLE approach with the Rhie-Chow (RC) cell-face 

interpolation scheme [34] and one variant of the artificial compressibility (AC) method based on steady incompressible viscous-

flow computations for 3D curvilinear grids. Overall, predictions from the SIMPLE method compare more favorably with 

experiments than those of well-resolved computations provided by the AC method. Since the current SIMPLE is analogous to the 

RC scheme used in Reference [23], its computations can be used as a reference for comparisons, although the present test case is 

not a well-documented benchmark.  

 

The employed non-uniform grid refinement, consisting of 40 radial and 30 circumferential line segments, is assumed to be 

sufficiently accurate to compute associated transport characteristics. Figures 8 and 9 illustrate the vertical velocity and 

temperature profiles, respectively, at the horizontal midplane for Gr = 105 − 106, where X is exactly measured from the inner 

curved surface. Remarkably, the correspondence of ASIMPLE with the SIMPLE is quite striking and both solutions produce an 

impressive agreement with CVFEM data. Nevertheless, some discrepancies between SIMPLE/ASIMPLE and CVFEM results 
appear after the boundary layers. The probable reason for this inconsistency is that the CVFEM estimates the nodal velocity and 

temperature by computing the weighted nodal velocity and temperature. This incongruity may be reduced to some extent using a 

finer grid resolution. Ostensibly, the local Nusselt number distributions in Figure 10 replicate identical solutions. 

 

 
(a) (b) 

Fig 8:- Velocity profiles on horizontal midplane for buoyancy-driven flow in annulus. 
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(a)                  (b) 

Fig 9:- Temperature profiles (𝜃 = 𝑞) on horizontal midplane for buoyancy-driven flow in annulus. 

 

 
(a)                       (b) 

Fig 10:- local Nusselt number along hot wall for buoyancy-driven flow in annulus. 

 

Figure 11 demonstrates the velocity contours, pertaining to SIMPLE and ASIMPLE algo-rithms at two different Grashof 

numbers. Explanations analogous to Figure 5 for the buoyancy-driven natural convection in a square cavity could be valid for 

these velocity contours and they are compatible with velocity and temperature profiles shown in Figures 8 and 9, respectively. The 

glaring difference of Figure 11 with those of Figure 5 is that with increasing Gr, central big vortexes are stretched along the 

curvature of annular cavity, augmenting the velocity magnitude in near-wall regions and temperature profiles get steeper therein. 

 

 
(a) GR = 105: SIMPLE                            (b) GR = 105: ASIMPLE 
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(c) GR = 106: SIMPLE                           (d) GR = 106: ASIMPLE 

Fig 11:- Velocity contours for buoyancy-driven flow in annulus. 

 

Figure 12 exhibits the convergence histories for the mass imbalance/artificial density change at different Grashof numbers. 

Similar to the previous case, the convergence becomes faster in the ASIMPLE method with a higher CFL number. It is once more 
ensured that higher CFL numbers depend on the artificial sound speed C. CFL = 1 is a good compromise with the SIMPLE 

algorithm to accommodate better convergence in all computations. 

 

 
(a)                                                 (b) 

Fig 12:- Convergence histories of mass residuals (∆𝜌∗ = 𝐷𝑟∗) for buoyancy-driven flow in annulus. 

 

Average Nusselt number ASIMPLE SIMPLE 

     

Gr Square Cylinder Square Cylinder 

     

105 5.42 8.42 5.42 8.41 
     

106 10.94 14.36 10.95 14.38 

     

107 18.90  18.91  

     

Table 1:- Average Nusselt number at different Grashof numbers for buoyancy-driven flows. 
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Apparently, quantitative results presented in Table 1 

show that ASIMPLE solutions match SIMPLE data very 
well. The table represents the values of average Nusselt 

number on the hot wall for both square and concentric 

annular cavities. The larger the average Nusselt number, 

the more obvious is the convection heat transfer. 

 

V. CONCLUSIONS 

       

A comparative assessment is prosecuted between 

SIMPLE and ASIMPLE algorithms within the framework 

of a pressure-based approach, using two-dimensional 

buoyancy-driven incompressible flows on a curvilinear 

non-staggered grid. Both schemes use a cell-centered finite-
volume approximation, solving the flow equations in a 

segregated fashion with a pseudo-time integration attribute. 

The ASIMPLE includes an AC parameter with the pressure 

Poisson equation, amplifying the diagonal dominance of 

influence coefficients. The AC artifacts invoke artificial 

density perturbations, contributing assertively an intended 

linearization to tentative momentum residuals; the AC-

generated sound speed provides just enough damping at the 

cell-face velocity via the time step, preventing the pressure-

velocity decoupling.  Relevant phenomena associated with 

both algorithms alleviate the need for UR factor even in the 
presence of a dominant source term in momentum 

equations. However, compared with the SIMPLE model, 

the ASIMPLE scheme has been additionally sensitized to 

enhanced convergence and robustness by including the time 

step ∆ t, parameterized with diffusive, convection and 

artificial sound speeds. In principle, the actual coding 

pertaining to SIMPLE and ASIMPLE methods is quite 

simple and straightforward. 

 

The SIMPLE algorithm and its variant ASIMPLE 

perform well quite consistently over the different flows 
computed in this research. Results demonstrate that both 

methods compare favorably with literature and CVFEM 

data for a specified level of grid resolution. Compared with 

the SIMPLE formula, flow quantities namely the velocity, 

temperature and heat transfer-rate remain almost unaffected 

by the addition of AC term with the ASIMLE; however, 

convergence studies essentially reveal that the ASIMPLE 

scheme is capable of producing satisfactory stabilization for 

the iteration process. Note that observed oscillations in the 

convergence plot are due to the linearization of strong 

positive source term in the momentum equation with CFL 
numbers. Conclusively, predicted results of ASIMPLE are 

identical to SIMPLE with substantially augmented stability 

and convergence properties when convoking the AC 

parameter, resulting in a conversion of SIMPLE to 

ASIMPLE. Above all, the linearization of momentum 

residuals with mass imbalance ∆𝜌, and appropriate choices 

of damping factor  𝜂 and weighting factor 𝛥𝑡′ influence the  

SIMPLE-like algorithm to avoid the presence of UR 

feature. 
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