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Abstract:- The Coronavirus disease (COVID 19) pandemic is not 

only a health problem but also a global economic problem, which 

disrupts the daily life of people around the globe, including 

billions of children whose education are derailed. We formulate a 

mathematical model which studies the dynamic of the disease in 

the presence of preventive measures like social distancing, contact 

tracing, quarantine and isolation of cases. The model was shown 

to be biologically feasible and mathematically well-posed, and has 

both disease-free and endemic equilibria. The basic reproduction 

number (R0) was also computed, and a sensitivity analysis was 

carried out on R0. Furthermore, numerical simulations were 

performed to validate the result of the qualitative stability 

analyses of the equilibria, and to determine the effects of some 

epidemiological parameters. 

 

It was established that whenever R0 < 1, the disease-free 

equilibrium is both locally and globally asymptotically stable and 

no endemic equilibrium, while when R0 > 1, the disease-free 

equilibrium is unstable and the endemic equilibrium is 

asymptotically stable both locally (with conditions) and globally. 

The sensitivity analysis showed that rate of social distancing and 

effective contact rate are the most sensitive parameters to R0, 

among others. The results of the numerical simulations showed 

that increase in the rate of effective contact causes increase in 

COVID-19 epidemic, while increase in the rates of social 

distancing, contact tracing, quarantine, isolation of cases and 

recovery decline the epidemic. 

 

Therefore, a high social distancing should be maintained as 

intensive contact tracing followed by quarantine, isolation of cases 

and supportive treatment are in place as intervention measures, 

in order to keep the epidemic under control. 

Keywords—Corona Virus, COVID-19, Social distancing, Contact 
tracing, Quarantine, Isolation, Reproduction number, 
Equilibrium, Stability, Sensitivity 

I.  INTRODUCTION  

 

The new strain of Corona virus, Severe Acute respiratory 

syndrome Corona virus 2 (SARS-CoV-2) first identified in 

Wuhan china, in December 2019, is the causative agent of 

Corona virus disease 2019 (COVID-19), and is highly 

infectious [1]. The origin of the zoonotic virus is yet to be 

confirmed, studies revealed that SARS-CoV-2 likely 

originated in bat, SARS-CoV-2 isolated from infected human 

is closely related genetically to corona virus from bats 

population [2,3]. Evidences from reported cases show that 

incubation period of COVID-19 ranges from 1-14 days. It was 

also discovered that the duration between exposures to the 

onset of infectiousness (latent period) may be shorter than 

incubation period. In essence asymptomatic and symptomatic 

persons can transmit the disease [4,5]. Based on current 

research report, SARS-CoV-2 is transmitted through particle 

droplets called aerosols, fomites, and close contact with an 

infected person or surfaces [6], also with possible spread 

through faeces [7]. The virus as reported can remain on 

surfaces for up to 9 days, aerosols and droplets produced 

through sneezing or speech can be inhaled by susceptible 

persons. Upon inhalation the particles are deposited in the 

upper region of the respiratory lungs, from which may be 

expelled or swallowed [8]. This informed the advisability of 

wearing a suitable mask and allowing for adequate ventilation 

of enclosed places. 

 

There is no cure or specific antiretroviral treatment 

recommended for COVID-19 and no vaccine is presently 

available but understudy. Instead, infected persons receive 

treatments that manage symptoms as the virus runs its course. 

Therefore, avoidance is the principal cure. The symptoms of 

covid-19 could be mild or moderate respiratory illness, 

individuals recover with or without special treatment except 

those with medical conditions such as lungs, kidney or heart 

diseases, immune system condition such as HIV/AIDS and 

diabetes. The symptoms include fever, tiredness, coughing, 

and shortness of breath, sore throat and acute respiratory 

syndrome in severe cases [9]. 

 

Since the emergence, in late 2019, of the novel SARS-

CoV-2 that causes COVID-19 there have been 2.6million 

confirmed cases including more than 180 thousand deaths 

recorded worldwide [10]. The Corona virus disease (COVID 

19) pandemic is not only a health problem but also an 

economic problem, daily life of people around the globe are 

disrupted including billions of children whose education are 

derailed and the breakout of domestic violence amid the 

lockdown. Prevention and control of the new disease can be 

done if new infections are controlled, with adequate contact 

tracing, isolation and quarantine also maintaining good 
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personal and environmental hygiene [11]. Despite the increase 

in the number of infected persons worldwide especially in the 

Sub Sahara Africa the World Health Organization (WHO) in a 

press briefing in April 2020 to Africa says containment is 

possible and will require adequate testing, hand washing, 

making treatment centres available to care for infected patient 

appropriately, maintaining social distancing and obey the stay-

at-home order [12]. Likewise a recent research by the Imperial 

College London research team reported that Africa could see 

about 3.3million death and 1.2 billion infections within 3 to 6 

months if the virus is left unchecked. The team suggested that 

rapid adoption of proven health measures including testing, 

isolation of cases and wider social distancing to prevent 

onward transmission are critical in curbing the impact of the 

pandemic [13]. 

 

A number of mathematical models have been developed to 

better understand the dynamics and investigate how to 

effectively control the spread of COVID 19. Kucharski et al. 

[14] modelled the early dynamics of transmission and control 

of the disease, they combined a SEIR model of SARS-CoV-2 

transmission with four datasets from within and outside Wuhan 

to estimate how the transmission in Wuhan changed from 

December 2019 to January 2020. The estimates were used to 

assess the potential for sustained human to human transmission 

to occur in locations outside Wuhan if cases were introduced. 

Their results also show that there was probably substantial 

variation in SARS-CoV-2 transmission over time; sudden 

decline in transmission in Wuhan coincides with travel control 

measures. Tang et al. [15] devised an SEIR compartmental 

model based on the clinical progression of COVID-19, 

epidemiological status of the individual and intervention. They 

reported that the intervention can effectively reduce the control 

reproduction number and transmission risk. In an updated 

version of the previous model, Tang et al. [16] stated that 

policy decision of the major public health intervention such as 

contact tracing, quarantine and isolation are not enough to 

reduce the trend of the peak time of the epidemic but require 

real time information of the data, knowledge about the 

implementation and the resources available to facilitate the 

implementation of such intervention. Okhuese [17] in an effort 

to evaluate the disease equilibrium proposed a model for 

COVID -19 agreeing that unless there is a dedicated effort 

from government, decision makers and the stakeholders 

eminent spread cannot be avoided. Other researches on 

mathematical modelling of COVID-19 can be seen [18–24]. 

 

In the present work, we formulate a mathematical model, 

using a system of ordinary differential equations to study the 

dynamic of COVID-19 in the presence of preventive measures 

like social distancing, contact tracing, quarantine, isolation of 

cases and supportive treatment. The rest of this work is 

organized as follows: we give a full description of the model 

and show a domain where the model is biologically feasible and 

mathematically well posed in Section II. Section III provides 

the existence of equilibria including a derivation of the basic 

reproduction number and stability analysis of the equilibria. In 

Section IV, we perform sensitivity analysis and numerical 

simulations of the model with graphical illustrations and their 

discussion, and give concluding remark in Section V. 

II. MODEL FORMULATION AND 

PROPERTIES 

To study the dynamical transmission and control of Corona 

virus disease, an epidemic mathematical model was 

formulated. 

A. Formulation of the Model 

This new model subdivides the total human population size 

at time t, denoted by N(t), into individuals who are susceptible 

S(t); exposed E(t); quarantined Q(t); infected I(t); isolated J(t); 

and recovered R(t), so that 

( ) ( ) ( ) ( ) ( ) ( ) ( )N t S t E t Q t I t J t R t       . (1) 

 

Susceptible individuals are recruited into the population either 

by birth or immigration at a rate Π. When a susceptible 

individual get into effective contact with any of the infectious 

individuals, the susceptible individual contracts the corona 

virus and move to the exposed compartment at a rate 

  1 1( ) ( ) ( )
1 ( )

Q t I t J t
S t

N

 
 

  
  

 
, where ε1 and ε2 are 

infectivity reduction rates in quarantined and isolated sub-

populations respectively due to hygiene precautions, and η is 

the rate of social distancing, which accounts for a reduction the 

contact. The susceptible class is further reduced by natural 

mortality at a rate μ and increased by  1 ( ) and ( )Q t R t   , 

 1    is a proportion of the quarantined individuals who 

are uninfected after their quarantine period, and   is 

immunity loss rate after recovery which is responsible for re-

infection.  

 

Contacts with the exposed and infected individuals are 

traced at a rate τ1 and τ2, and such traced individuals are 

respectively quarantined or isolated. The exposed is further 

reduced by   ( )E t  , where 1/ρ is the average time spent 

in the latency period. A detected proportion of θρ of the 

exposed are quarantined after latency period while the other 

proportion (1-θ)ρ moves to the infected class. The quarantined 

and the infected classes are further reduced by 

   1 2 1( ) and ( )Q t I t          respectively, where 

1 1 and    are COVID-19 related mortality and progression 

rates of the infected respectively. The isolated and recovered 

classes are increased by 
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   2 1 1 2( ) ( ) and 1 ( ) ( )Q t I t I t J t          

respectively, where 
1  are the proportion of infected who are 

isolated upon detection and   11    are the other proportion 

who recovered. These two classes are reduced by 

   2 2 ( ) and ( )J t R t        respectively, where 

2 2 and    are the COVID-19 related mortality and recovery 

rates for the isolated classes. 

 

It is assumed that exposed individuals do not always 

transmit COVID-19, since they do not show symptoms [25], 

and works are still on-going as to whether they actually 

transmit or not. Even if they do, it is with reduced infectivity. 

It should be noted that exposed individuals differ from 

asymptomatic infective individuals. Also, on the basis of the 

fact that the on-going pandemic of COVID-19 spread majorly 

through person-person transmission [23, 26], the population of 

virus in the environment is not considered in the model.   

 

The Fig. 1 below shows the dynamics of the model with the 

inflow and outflow of individuals in each compartment with 

detail of the model parameters given in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The model is mathematically formulated as a system of 

coupled ordinary differential equations as: 

 

 

 

 

 

 

 

 

 

 

 
 

B. Normalization of the Model Equations 

A constant population is assumed (i.e. N(t) = N is a 

constant). Hence, without loss of generality, a dimensionless 

system can be used to explore the dynamics of the COVID-19 

model. 

Table 1: Description of the Model’s Variables and Parameters  

Variables / 

Parameters 

Description 

S(t) Number of susceptible humans at a time t 

E(t) Number of exposed humans at a time t 

Q(t) Number of quarantined humans at a time t 

I(t)  Number of infected humans at a time t 

J(t) Number of isolated humans at a time t 

R(t) Number of recovered humans at a time t 

N Total human population 

Π  Rate of recruitment (from birth and 

immigration) 

μ   Rate of natural mortality  

β  Rate of effective contacts resulting to disease 

transmission among humans 

ε1, ε2  Rates of infectivity reduction in quarantined 

and isolated sub-populations respectively due 

to hygiene precautions 

η (0 ≤ η ≤ 1) Rate of social distancing  

τ1, τ2 Rates of contact tracing for the exposed and 

infected sub-populations respectively  

δ1, δ2 (δ1 > δ2) Rates of COVID-19 related mortality for 

infected and isolated sub-populations 

respectively 

ρ  Rate of progression from the exposed sub-

population 

θ (0 ≤ θ ≤ 1) Proportion of exposed individuals who are 

identified and quarantined  

σ  Rate of progression from the quarantined sub-

population 

ξ (0 ≤ ξ ≤ 1) Proportion of quarantined individuals who are 

confirmed COVID-19 positive and are 

isolated 

γ1 Rate of progression from the infected sub-

population  

φ (0 ≤ φ ≤ 1) Rate of isolation of the infected individuals 

(1 – φ) Proportion of infected individuals who 

recover  

γ2 Rate of recovery of isolated individuals due 

to supportive/symptoms treatment 

κ  Rate of reinfection (Immunity loss rate) of the 

recovered individuals 

 

Now to normalize the populations, set 

   

   

   

   

 

1 1

1 1
1

1

1 2 1

2 1

( ) ( ) ( )( )
( ) 1 ( ) 1 ( ) ( )

( ) ( ) ( )( )
1 ( ) ( )

( )
( ) ( )

( )
1 ( ) ( ) (2)

( )
( ) (

Q t I t J tdS t
N S t S t Q t R t

dt N

Q t I t J tdE t
S t E t

dt N

dQ t
E t Q t

dt

dI t
E t I t

dt

dJ t
Q t I t

dt

 
      

 
    

   

     

  

  
       

 

  
     

 

   
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    
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1 2
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) ( )

( )
1 ( ) ( ) ( );

with

( ) , ( ) , ( ) , ( ) , ( ) , ( ) . (3)

J t

dR t
I t J t R t

dt

S t S E t E Q t Q I t I J t J R t R

  

    

  

    

     

 

 

Fig. 1: Schematic diagram showing the dynamics of 

COVID-19 in human population 
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( ) ( ) ( ) ( ) ( ) ( )
( ) ; ( ) ; ( ) ; ( ) ; ( ) ; ( ) (4)

S t E t Q t I t J t R t
s t e t q t i t j t r t

N N N N N N
     

 

where N is a constant, so that the dimensionless system in 

terms of the new variables with proportion is 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Positivity and Boundedness of Solutions 

Since the system under consideration involves population, 

it is important to establish that it is biologically feasible. This 

is done by showing that all solutions to the model equations 

are non-negative at any time t.     

Theorem 1: Let the initial conditions of the state variables be 

such that 

 (0) 0, (0) 0, (0) 0, (0) 0, (0) 0, (0) 0and (0) 0 .s e q i j r N        

Then the solution set  ( ), ( ), ( ), ( ), ( ), ( ) and ( )s t e t q t i t j t r t N t  

is non-negative in   for all time t ≥ 0. 

Proof: Each equation in the normalized model (5) is 

considered for the positivity of the state variables as follows. 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Other state variables can also be shown to be non-negative in a 

similar manner. Hence, all the state variables are non-negative 

in the region   for all time t ≥ 0, whenever the initial values 

are non-negative.  

Theorem 2: Every solution in the solution set 

 ( ), ( ), ( ), ( ), ( ), ( ) and ( )s t e t q t i t j t r t N t  for the normalized 

model equation (5) is attracting. 

This implies that every solution approaches and remains in the 

region as t  . 

Proof: Recall that  

 

 

 

 

 

 

 

 

Separating the variables and integrating, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus every solution with initial conditions in 
6

  approaches 

and remains in that region for all t ≥ 0; and so the region 

 

 

is positively invariant. 

 

This result together with that of Theorem 1 implies that 

     
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dt

di t
e t i t

dt
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t
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        

 

where ( ) ( ) ( ) ( ) ( ) ( ) 1,N s t e t q t i t j t r t      
          

(6) 

 

with initial conditions: 

0 0 0 0 0 0(0) , (0) , (0) , (0) , (0) , (0) .s s e e q q i i j j r r                 (7)  (2.7) 
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 Separating the variables and integrating, 

   

   

   1 1 1

1 1

1 1 1

1

1 ( ) ( ) ( )

0 0

0

( )
1 ( ) ( ) ( )

( )
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where is a constant of integration.

Then ( ) , where : .
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 0 ( ) or 0 ( ) 1,  since =1N t N t N



     at any time t ≥ 0.  

i.e. the model solutions are positive and bounded at any time t, 

and so it is both epidemiologically feasible and mathematically 

well posed. Hence, it is sufficient to study the dynamics of the 

model in the region  . 

III. MATHEMATICAL ANALYSIS OF THE MODEL 

In this section we carry out qualitative analysis of the model 

(5) to investigate existence and stability of the steady states. At 

steady states,  

 

 The steady state system of the model equation (5) is given as  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

The model exhibits two equilibria depending on whether or 

not there is COVID-19 in the population. 

A. Existence and Stability of Disease-free Equilibrium, E0 

Disease-free equilibrium points are steady-state solutions of 

the model equations when COVID-19 is absent in the 

population. This corresponds to the solution of the system (9) 

when ( ) ( ) ( ) ( ) 0t q t i t j te
  

    . Thus the disease-free 

equilibrium of the model is obtained as 

0 , 0, 0, 0, 0, 0E




 
  
 

, 

or equivalently,      0 1, 0, 0, 0, 0, 0E 
          

(10) 

 

 Computation of the Basic Reproduction Number, R0 

 To compute the Basic Reproduction Number (R0) of the 

model, the next generation matrix approach described by 

Driessche and Watmough [27] is employed. Using this 

approach, R0 is defined as the spectra radius (dominant 

eigenvalue) of the Next Generation Operator, FV–1 [28]. i.e.  
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This quantity gives the reproduction number, which is an 

important notion in epidemiology. It is a threshold value that is 

often used to measure the spread of a disease. It is defined as 

the average number of secondary cases produced by a "typical" 

infected (assumed infectious) individual during his/her entire 

life as infectious (infectious period) when introduced in a fully 

susceptible population [29]. 

 

The above quantity in (3.6) can be referred to as the control 

reproduction number, since the model from which it was 

obtained incorporates control parameters. In the absence of all 

the controls, the above reproduction in (3.6) becomes 

 

 

 
 

 Local Stability of the Disease-free Equilibrium 

 

 

 

Proof: The local stability of the disease-free equilibrium is 

determined by the eigenvalue of the Jacobian matrix of the 

system (5), evaluated at E0, thus; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with R0 as defined in (14) and R1, R2 as defined in (13). 

 

 

 

the roots of the quartic equation (16) are negative (or complex 

with negative real parts). Hence, the disease-free equilibrium is 

locally asymptotically stable. Otherwise, it is unstable.  
 

 Global Stability of the Disease-free Equilibrium 

The global stability analysis of the disease-free equilibrium 

for the COVID-19 model is explored using the Next 

Generation Operator method described by Castillo-Chavez et 

al. [30]. This is done as follows. 

 

Considering the model equations (5), the system of 

equations can be rewritten in the form: 

 
 

 

 

 

where 
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X  denotes (its components) the number of 

uninfected individuals and 
n

Y  denotes (its components) 

the number of infected individuals, including the latent and 

infectious ones;  0 ,0E x



 

denotes the disease-free 

equilibrium of the system. 
 

Theorem 4: The disease-free equilibrium,  0 1, 0, 0, 0, 0, 0E  , 

of the system is globally asymptotically stable (GAS) provided 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       
       

 
   

 
   

 

0

1 2

1 1 2

1

1 2 1

2 1 2 2

1 2

Matrix  has eigenvalues ; 

0 1 1 1 1

0 1 1 1 0

0 0 0 0

0 1 0 0 0

0

other

0 0

0 0 0 1

an s being td he r

E

J

J

         

        

   

     

     

    

    

         
 

      
   
 

     
    
 
    

    

            
 

        
 

 

  

4 3 2

1 1 2 1 2 2 1 1 1 1 2

1

1 1 2 1 2 2 2 1 1 3

1

1 1

1
1

oots of the

1
1

 quartic equatio

( )

n:

16

A R R

A R A

 
                    

  

 
             

  

       

  
                           

  
                   

        

          

  

      

      

         

2 1 2 2 0

1 1 2 1 2 2 1 2 1 2 2

1

1

1 1 2 1 2 2

2

1 1 2 1 2 2

2 2 1 1 2 1

3

1 0;

where ,

, (17)

1 1

R

A

A

A

   

                  

    

           

           

            

    

                     
  

          
          

          
 

     1 2 1 2 2

 

        

  

        

 

  0

1 1

.


    
 

  
                  (15) 

Theorem 3: If R0 < 1, and if 
 

1 1 2 1

1

1
1 andR R A

 


  


    

 
 

 
 1 1 3 2

1

1
1R A A

 


  


  

 
, then the disease-free equilibrium 

is locally asymptotically stable. Otherwise, it is unstable. 
 

 

   

,

, , ,0 0;

dX
F X Y

dt

dY
G X Y G X

dt



 

   (18) 

Now, if R0 < 1, and if 
 

1 1 2 1

1

1
1 andR R A

 


  


    

 
  

 then by Descartes’ rule of sign, all 

 
1 1 3 2

1

1
1R A A

 


  


    

 
, then by Descartes’ rule of signs, 

http://www.ijisrt.com/


Volume 5, Issue 5, May – 2020                                             International Journal of  Innovative Science and Research Technology                                                 

                                        ISSN No:-2456-2165 

 

IJISRT20MAY257                                                  www.ijisrt.com                    954 

that R0 < 1 (i.e. if it is locally asymptotically stable) and the 

assumptions (H1) and (H2) below hold: 
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Hence, the disease-free equilibrium,  0 1, 0, 0, 0, 0, 0E  , 

of the system is globally asymptotically stable when R0 < 1. 

Otherwise, it is unstable. This completes the proof. 
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q e

e

 
    

   

 

 

 

   

            

     

    

 

 

 





   
        

   









  

       


     

 

 

   

2 2

1 2 2 3

0

0 1 1 2 2 3

( )

( )
( ) 1

1
and   ( )

1 1 (1 )

t

t
r t R R

R
t

R R R R

e

e

e

  

  
 




    

 








 

    




   
      

   
 

with R1, R2 and R3 as defined in (13) and R0 as defined in (14).
 

 

Hence, the endemic equilibrium, Ee, exists for the system only 

if R0 > 1 and    1 1 2 2 31 (1 )R R R


    
 

 
    

 
 is less 

than unity, and no endemic equilibrium exists if otherwise.  

 

It is remarkable to note that if R0 = 1, then the endemic 

equilibrium coincides with the disease-free equilibrium. 

 
 

 Local stability of the Endemic Equilibrium 

Theorem 5: If R0 > 1, there exists an endemic equilibrium, 

which is locally asymptotically stable iff for constants 

, 1,2...10ia i  , 1 2 3 4 5 6 7 8 9 10; ; ; ;a a a a a a a a a a     . 

Otherwise, it is unstable. 

Proof: The local stability of the endemic equilibrium is 

determined by the eigenvalue of the Jacobian matrix of the 

system (5), evaluated at Ee, thus; 

 

  

H1: For  ,0 , is GAS;
dX

F X X
dt


  

H2:        ˆ ˆ, , , , 0 for , ,G X Y AY G X Y G X Y X Y      
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           6 5 4 3 2

1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10

Matrix  has eigenvalues being the roots of the polynomial equation:

0, (20)c c c c c c a a a a a a a a a

J

a                     

where  

           1 0 2 1 3 4 1 2 1 5 2 2 6( ) ; ; ; ; ; ,c R e t c c c c c              


                 

and 

        

 
   
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0

;

1
1 ;

1
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a
R
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are positive constants. 

Now, if 
1 2 3 4 5 6 7 8 9 10; ; ; ;a a a a a a a a a a     , then by 

Descartes’ rule of sign, the polynomial equation (20) has no 

sign change, and so all the roots are negative (or complex with 

negative real parts). Hence, the endemic equilibrium, Ee, is 

locally asymptotically stable. 
 

 Global Stability of the Endemic Equilibrium 

 The global stability of the COVID-19 endemic equilibrium, 

Ee, is obtained by means of Lyapunov’s direct method and the 

LaSalles’s invariance principle [31,32]. 
 

Theorem 6: Consider the normalized model equation (5) for 

COVID-19. Let  , , , , ,
e

E s e q i j r
     

  be a critical solution 

(i.e. the endemic equilibrium points). If there exist a positive 

definite scalar function,  , , , , ,eV s e q i j r
     

 such that 

0edV

dt
 . Then  , , , , ,eV s e q i j r

     
 is a Lyapunov function 

for the system and Ee is globally asymptotically stable.  
 

Proof: Consider the nonlinear Lyapunov function 

 

 

log log

log log

log log ,

e

s e
V s s s e e e

s e

e i
q q q i i i

q i

j r
j j j r r r

j r

 

 

 

   

 
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 

   

 

   
        

   

   
        

  

   
        

  

   (21) 

where Ve is 
'

C (compact) in the interior of the region .
e

E  is  

the global minimum of   on  the  region  eV  and 

 , , , , , 0eV s e q i j r
     

 . The time derivative of Ve defined 

in equation (21) is obtained thus: 
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 
 2) ( ) ( ) .j t r t      

 

At equilibrium, the time derivative for each class equals 

zero, implying from (9) that 

     
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       

    

   
   

Putting (22) into 
eV  gives 

     

     

  

     

1 1

1

1 2 1

2 2

1 ( ) ( ) ( )

.

e

S s
V q t i t j t s s

S

e e q q
e e q q

e q

i i
i i

i

j j r r
j j r r

j r

     

    

   

    




 
 




 
 

 
           

 
    

            
   
 

      
 

     
             

    

 (23) 

 

Now, the endemic equilibrium,  , , , , ,
e

E s e q i j r
     

 , 

being the global minimum of Ve implies that , ,s s e e
 
   

, , , .q q i i j j r r
   
     Therefore from (23), 0eV  . 

0eV   iff , , , , , .s s e e q q i i j j r r
     
       Thus the 

largest compact invariant set in 

 , , , , , : 0es e q i j r V
     

  is the singleton set Ee, 

which is the endemic equilibrium for the COVID-19 model. 

Hence,  , , , , ,
e

E s e q i j r
     

  is globally asymptotically 

stable in the region . This completes the proof. 

 

IV. SENSITIVITY ANALYSIS AND NUMERICAL 

SIMULATIONS 

A. Sensitivity Analysis of R0   

Sensitivity Analysis is an important notion in epidemiology, 
which determines the importance of each parameter to disease 
transmission. It is commonly used in determining the 
responsiveness of model prediction to parameter values, since 
there are usually errors in data collection and presumed 
parameter values. It is used to determine parameters that have 
high impact on the R0 and which should be targeted by 
intervention strategies. 
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Table 2: Sensitivity Indices of R0 

 

Following the approach of [33, 34], the normalized forward 

sensitivity index of R0 that depends differentially on a 

parameter p is defined as 

  0 0

0

.
R

p

R p

p R






.   (24) 

 

Given this explicit formula for R0, we can easily derive an 

analytical expression for the sensitivity of R0 with respect to 

each parameter that comprises it. For example, the sensitivity 

index of R0 with respect to the rate of social distancing, η, is 

 
 

 

Similarly, the obtained values for the sensitivity index of R0 

with respect to other parameters, for the base line parameter 

values in table 3 are given in Table 2 above.  

 

From the index table, it was revealed that the most sensitive 

parameters are the rates of social distancing (η) and effective 

contact (β). Other parameters like rates of contact tracing, 

quarantine, isolation of cases and recovery are also sensitive to 

the reproduction number. By a way of illustration, 

0 1.00
R

    means that increasing (or decreasing) β by 10% 

increases (or decreases) R0 by 10%; while 0

1
0.6756

R

    

means that increasing (or decreasing) γ1 by 10% decreases (or 

increases) R0 by 6.756%. The interpretation of the sensitivity 

indices of other parameters follows as of that of β and γ1. 

Arising from this sensitivity analysis, the effects of the 

sensitive parameters on the dynamics of the COVID-19 model 

are illustrated graphically in the next section.  

 

B. Numerical Simulations and Results 

The numerical simulation for the COVID-19 model was 

carried out by Maple 18.0 software using direct substitution 

method to show solution of the model equation, the global 

stability of the equilibria and the effects of parameters like rates 

of social distancing (η), effective contact (β), contact tracing (τ1 

and τ1), quarantine and recovery. We used some of the 

parameter values compatible with Corona virus as given in the 

Table 3 below, and by considering the initial conditions: 

 

(0) 0.3, (0) 0.25, (0) 0.2, (0) 0.15, (0) 0.1, (0) 0s e q i j r      , 

so that N = 1. 

 

Parameters Values Sources 

Π 273.23 [20] 

μ  3.01x10-5 day-1  [20] 

β  0.62x10-8 day-1 [20] 

ε1 1.00x10-4 [35] 

ε2 1.01x10-4 [35] 

η  0.25 Assumed 

τ1 0.06 [36] 

τ2 0.07 [36] 

δ1, 0.010 [20] 

δ2 0.001 Assumed 

ρ 1/7 [20] 

θ 0.3 [35] 

σ 0.3 [35] 

ξ  0.5 Assumed 

γ1 
1/15 [20] 

φ 0.5 Assumed 

γ2  1 1 1
2 3 7

  [24] 

κ 0.03 Assumed 

       Table 3: Parameter Values Used in the Model 

 

 The results of the numerical simulations are given in 

Figures 4.1 – 4.8 to illustrate the system’s behaviour for 

different values of the COVID-19 model’s parameters. 

Parameters Baseline Values Sensitivity indices 

μ 0.00000301 – 0.0000453431 

η 0.25 – 1.0000000010 

β 0.62x10–8 + 1.0000000000 

ε1 0.001 + 0.0000338266 

ε2 0.00101 + 0.0000448056 

τ1 0.06 – 0.2957380241 

τ2 0.07 – 0.2229445574 

δ1 0.01 – 0.1013426591 

δ2 0.001 – 0.0000001874 

ρ 1/7 + 0.2957528622 

θ 0.3 – 0.4285247204 

σ 0.3 – 0.0000338260 

ξ 0.5 + 0.0000214336 

γ1 
1/15 – 0.6756036473 

φ 0.5 + 0.0000140796 

γ2  1 1 1
2 3 7

  – 0.0000446177 

obtained as   0 0

0

. 1.0000000010.
R R

R








 


        (25) 
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Fig. 2: Plot of all populations with time at the given model parameters 

 
Fig. 3: Plot of the global stability if the disease-free 

equilibrium with various initial conditions 

 

Fig. 4: Plot of the global stability if the endemic equilibrium with 
various initial conditions 

 

C. Discussion of Results 

The plot in Fig.2 is the solution plot for the model equation 

(5). This plot shows the behaviour of the populations over time 

for the set of parameter values given in Table 3. It can be seen 

from the plot that the control measures incorporated are actually 

effective in reducing/eliminating COVID-19 epidemic in the 

population. Fig.3 and Fig.4 illustrate the global stability of the 

disease-free and the endemic equilibria, as established by 

Theorems 4 and 6 respectively. These imply that if R0 < 1, 

elimination of COVID-19 is guaranteed regardless of the initial 

size of the infective and infectious individuals in the population. 
This is shown in Fig.3 where all solutions converge to the 

disease-free equilibrium. Also from Fig.4, all solutions 

converge to and stabilize at the endemic equilibrium, showing 

that irrespective of the initial size of the infective and infectious 

individuals in the population, COVID-19 will persist in the 

population whenever R0 > 1. The parameter values used, shows 

that 
0

3.42  (obtained from equation (15)), which is in range 

when compared with [14, 15, 18-20]. However when the 
intervention strategies used in this model are in place, this 

values can be as low as R0 = 0.22 (obtained from the control 

reproduction number in (14)). 

 

 
Fig. 5: Plot of the effect of contact rate, β, on the susceptible 

population 

 
Fig. 6: Plot of the effect of contact rate, β, on the exposed population 
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Fig. 7: Plot of the effect of contact rate, β, on the infected 

population 
 

 

 
Fig. 8: Plot of the effect of social distancing rate, η, on the 

susceptible population 
 

 
Fig. 9: Plot of the effect of social distancing rate, η, on the exposed 

population 

 
Fig. 10: Plot of the effect of social distancing rate, η, on the infected 

population 

 
Fig. 11: Plot of the effect of exposed contact tracing rate, τ1, on the 

susceptible population 

 
Fig. 13: Plot of the effect of exposed contact tracing rate, τ1, on the 

infected population 
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Fig.5 – Fig.6 show the effect of the rate of effective contact 

(β) on the populations. It can be seen from Fig.5 that increase 

in the rate of effective contact with infectious individuals 

decreases the susceptible population, while increasing the 

exposed and infected populations as shown in Fig.6 and Fig.7 
respectively. From Fig.8 – Fig.10, the rate of social distancing 

is shown to increase the susceptible population (in Fig.8), 

while reducing the exposed and infected populations in Fig.9 

and Fig.10 respectively. 

 

The plots in Fig.11 – Fig.16 illustrate the effect of contact 

tracing (τ1 and τ2) on the dynamics of COVID-19. Fig.11 and 

Fig.12 respectively show that increase in the rate of contact 

tracing increases the susceptible population, and with more 

increase obtained when contacts with the exposed population 

are traced (at a rate τ1). Fig.13 and Fig.14 respectively show 

decline in the infected population when the rate of contact 
tracing increases, but in this case, tracing the contacts with the 

infected (τ2) reduces the infected population faster.  
 

 

 
Fig. 12: Plot of the effect of infected contact tracing rate, τ2, on the 

susceptible population 
 

 
Fig. 14: Plot of the effect of infected contact tracing rate, τ2, on the 

infected population 

 
Fig. 15: Plot of the effect of combined contact tracing rate, τ1 and τ2, 

on the susceptible population 
 

 
Fig. 17: Plot of the effect of quarantine rate, θ, on the susceptible 

population 

 
Fig. 19: Plot of the effect of quarantine rate, θ, on the infected 

population 

http://www.ijisrt.com/


Volume 5, Issue 5, May – 2020                                             International Journal of  Innovative Science and Research Technology                                                 

                                        ISSN No:-2456-2165 

 

IJISRT20MAY257                                                  www.ijisrt.com                    961 

 
Fig. 16: Plot of the effect of combined contact tracing rate, τ1 and τ2, 

on the infected population 
 

 
Fig. 18: Plot of the effect of quarantine rate, θ, on the quarantined 

population 

 
Fig. 20: Plot of the effect of recovery rate, γ1, on the infected 

population 

The combined effect of both τ1 and τ2 are investigated, and 

the results as depicted by Fig.15 and Fig.16 respectively show 

that the susceptible population increases more, while the 

infected population declines faster when the two forms of 

contact tracing are considered together. 

 

The effect of the rate of quarantine (θ) was also verified 

and the results are shown in Fig.17 – Fig.19. From Fig.17 and 

Fig.18, it was shown that increase in the rate of quarantine 

increases the susceptible population as well as the quarantine 

population respectively, while reducing the infected population 

as shown in Fig.19. 

 

 
Fig. 21: Plot of the effect of recovery rate, γ1, on the isolated 

population 
 

 
Fig. 23: Plot of the effect of recovery rate, γ1, on the recovered 

population 
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Furthermore, it was shown in Fig.20 that there is a sharp 

decrease in the infected population when the rate of recovery 

(γ1) increases. Also, this increase initially increases the isolated 

population, which later declines since some individuals 

progress out of this population upon recovery. This is depicted 
by Fig.21. From Fig.22, the effect of supportive treatment (γ2) 

was seen, which is administered to the individuals in isolation 

centres. As this rate of treatment increases, there is a decrease 

in the isolated population as such individuals progress unto the 

recovered population. From Fig.23 and Fig.24, it was shown 

that both recovery rate and supportive treatment rate 

respectively increases the recovered population initially. 

However at a point in time, the recovered population declines 

in both cases. This can be attributed to the fact that recovered 

individuals lose their immunity (at a rate κ) and move to the 

susceptible population where they can be re-infected. 

 

 
Fig. 22: Plot of the effect of supportive treatment rate, γ2, on the 

infected population 

 

 
Fig. 24: Plot of the effect of supportive treatment rate, γ2, on the 

recovered population 
 

V. CONCLUSION 

 

In this paper, we formulated and analysed an epidemic 

model for COVID-19, in which intervention strategies like 

social distancing, contact tracing, quarantine, isolation of cases 

and supportive treatment are considered. The region where the 

model is epidemiologically feasible and mathematically well-

posed was established, and the existence and stability of both 

disease-free and endemic equilibria were determined to depend 

on the threshold value, R0. 

 

Sensitivity analysis was performed on R0 and showed that 

rate of social distancing (η) and rate of effective contact (β) are 

the most sensitive parameters to the reproduction number (R0). 

Therefore, intervention strategies should be targeted towards 

these two parameters, among others, so that the spread of the 

disease would be reduced. The rate of contact could be reduced 

by increasing the rate of social distancing in the population. To 

achieve this, measures such as lockdown to restrict movement 

of people, introduction of travel control measures, ban on 

public gatherings, closure of schools and workplaces (coupled 

with learn and work from home plans), and so on, can be put in 

place. 

 

From the result of the numerical simulations, it is 

recommended that any individuals who have any form of 

recent contact with confirmed cases/exposed individuals be 

traced accordingly and quarantined/isolated immediately as the 

case may be. Furthermore, medical/health practitioners should 

take all necessary precautions (so as to prevent them from 

contracting COVID-19) while administering supportive 

treatment/care to infective individuals in isolation centres to 

enhance their quick recovery. 

 

Most importantly, corona virus’s vaccines as well as 

antiviral drugs should be designed in order to combat the 

current as well as possible future COVID-19 epidemics. 
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