
Volume 5, Issue 11, November – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20NOV496 www.ijisrt.com 655

CSRF and XSS Attacks and Defense Mechanisms

Udit Kalra

B.Tech Scholar

Department of IT

MAIT (GGSIPU), Delhi

Abstract:- Ransacking for just the perfect article is that

the most preferred and is sort of not easy to search out

supported the present requirements. As technology is

developing day by day, hacking is additionally occurring

very often. In these recent times, the sector of

cybersecurity is in dire need of prevention from this.

Gone are the times when firewalls were able to protect

your data. According to PT Security, each system contains

22 vulnerabilities out of which four are of high risk.We

need to try to do this ourselves to stop cybercrime.

According to Kaspersky Labs, the typical cost of a

cyber-breach is $1.23 million. This paper is on the brink

to give the simplest possible ways to assist and help make

secure websites. Security of Web application has become

a vital challenge because of common vulnerabilities

found during a web application nowadays. Web Security

is a crucial step to induce through a number of your

problems for an answer. Once you know that your

website is safe, you will be less accentuated. There are

lots of attacks accustomed hack a web site like CSRF,

XSS, Command Execution, Brute Force and more.I have

thoroughly researched the most general vulnerabilities

and created a live environment to attack similarly to

defend using the newest software. During this paper, I

have discussed two such vulnerabilities. They are Cross-

Site Request Forgery (CSRF) and Cross-Site Scripting

(XSS) and their prevention.

Keywords:- Web Security, Cyber Security, CSRF, XSS,

Application Security.

I. INTRODUCTION

In today’s world of digitalization, web applications,

which generally act as public-facing entities for several

businesses and corporations, are often the victim of

malicious attacks by hackers who wish to steal customer

data or whirl their way farther into a corporation’s private

network. There are some web applications available which

are design to be intentionally vulnerable for training
purposes. What I think is that web applications must be

developed by highly skilled developers who knows the

importance of providing security and knows how to handle

these vulnerabilities. Several companies understand the use

of the word security in web applications so they use these

type of developers and have trained individuals who knows

about cyber security. These individuals work to stay an

account on all the kind of vulnerabilities that exist and to

work the way to overcome if any new threat comes.

A small change in code or a little error can cause

enormous damage. Therefore it must be handled carefully to

allow the best possible results. Many researchers try to

search out a praiseworthy solution to unravel these

problems.

This papers main objective is to assist everyone who is

making a brand new website, learning about cybersecurity

or anyone using some online environment in day to day life

be safe from these pentesters. This paper has been divide

into many sections. Previous one was the abstract, Section I

is that the introduction of the subject. Section –II is about

Related Work which contains the information about the

topic and some work related to this paper. Section-III is

about the methodology of how attack is performed. Section-

IV is about the implementation and prevention of the attack.

This is the most important part of this research paper.
Section-V is all that says the paper review and conclusion

on my research. After that are some References to some

other research papers.

II. RELATED WORK

Cross-Site Request Forgery (CSRF) is an attack which

compels users to perform unwanted actions on the sites on

which they logged in currently. [1] Through social

engineering, the attacker sends the user some certain links

that are specially crafted for that user, using which an
attacker may trick the users of a web application into

executing actions of the attacker choosing. [2] In a

successful CSRF attack, the user unknowingly can do a lot

of damage such as transferring money, changing passwords,

provide sensitive data. If performed on an administrative

account, it can give the attacker access to the whole network

and cause widespread damage. Csrf attack exploits the

property of the web browser of automatically including the

cookies used by a given domain to any web request. In any

event of user unknowingly submitting a request to the

browser, which automatically collects the cookies of the site

the user is logged in and as a result, it creates a facade that
the forged request becomes true. Hence, the attacker now

can manipulate that request to perform any action such as

returning data, modifying data and more.

Cross-Site Scripting (XSS) is a Code injection attack

executed on the client-side of a Web App. Here, the attacker

injects some malicious code (script) through your web

browser. Now, whenever you visit that web server, the

malicious script is executed. It can harm you by stealing

cookies, session tokens, and much more sensitive data. It

can modify the contents of the website. XSS attacks are

http://www.ijisrt.com/

Volume 5, Issue 11, November – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20NOV496 www.ijisrt.com 656

basically of three types- Reflected XSS (Non-persistent),

Stored XSS (Persistent) and DOM(Document Object
Model) XSS.

In Reflected [8] XSS attack script is executed on the

victim site and not stored on the server. In Stored XSS

attack script is executed and stored on the server. Whenever

the malicious site is requested Stored XSS gets executed.

Though, XSS DOM is a client-side server attack. Here the

script is not sent to the server.

 Popular CSRF Vulnerabilities

1. ING Direct [11] (ingdirect.com)
A vulnerability on lNG's website that allowed

additional accounts to be created on behalf of an arbitrary

user. Some of the people were ready to transfer funds out of

users' bank accounts. This was the primary CSRF

vulnerability to permit the transfer of funds from an

institution.

2. YouTube [12] (youtube.com)

CSRF vulnerabilities were as discovered in nearly

every action a user could perform on YouTube. The attacker

using the csrf vulnerability could easily make changes on
the users account such as making comments on a video,

flagging a video, adding videos to favorites, collecting

contacts information from the user's account.

3. MetaFilter (metafilter.com)

A vulnerability existed on MetaFilter that allowed an

attacker to require control of a user's account. A forged

request could be wont to set a user's email address to the

attacker's address. A second forged request could then be

accustomed activate the "Forgot Password" action, which

might send the user's password to the attacker's email

address.

4. Play Framework [13]

A vulnerability within the Play framework can allow

an entire cross-site request forgery (CSRF) protection

bypass, researchers have warned. The play could be a

framework for building web applications with Java and

Scala. It is utilized by companies including LinkedIn,

Verizon, and Walmart. The open-source framework allows

users to line up a restricted set of content types it'll allow as

a part of its anti-CSRF mechanism. However, researchers

discovered they were able to bypass this optional
functionality by sending malformed Content-Type headers

to a target web app. It was found that an attacker could use a

semicolon within the boundary value which doesn't fit RFC

2046, therefore circumventing the framework’s blocklist

function.

5. Gmail (www.gmail.com)

A vulnerability in GMail was discovered in January

2007 which allowed an attacker to steal a Gmail user's

contact list. A distinct issue was discovered in Netflix which

allowed an attacker to alter the name and address on the
account, additionally as add movies to the rental queue etc.

 Popular XSS Vulnerabilities

1.) Yahoo, which was within the limelight for revealing an
enormous program its users earlier this year, has fixed a

highly critical cross-site scripting (XSS) security flaw in its

email system that may have allowed attackers to access any

email. This flaw was later discovered and reported by the

Finland-based security researcher JoukoPynnonen who also

got to earn $10,000 for the work. This flaw allowed an

attacker to read the victims email, creating a pandemic

affecting Yahoo Mail and many other things. Unlike other

email phishing scams and ransomware attacks, there is no

need for the hacker to send a plague or trick the victim into

clicking a specific link. The attacker would just have to send

a mail to the victims account to access their emails.
2.) In 2010, a cross-site scripting (XSS) vulnerability had

been identified on an American Express website secured

with EV SSL and might be exploited to reinforce phishing

attacks.

XSS weaknesses are the results of poor input

validation into Web forms and permit attackers to return

potentially malicious code to visitors' browsers.

Ensuring proper validation of all inputs in Web

applications, to forestall cross-site scripting and SQL
injection vulnerabilities is a requirement of the Payment

Card Industry Data Security Standard (PCI-DSS).

III. METHODOLOGY

 [3]The csrf attack is performed as follows:

Presume a user is active on an authentic target site A

through his browser. While traversing through his site the

user comes upon a link provided to him by an attacker

through social engineering (via email, chat etc). The user

immediately clicks on the given link, but it is critical for the

profitable execution of the attack that the user has the target
site Active on another tab.

 The link will now carry the user to the malicious site.

Now here the malicious site is specially crafted by the

attacker to accomplish the specific function he wants the

user to do.

[4]Crafting the site requires thorough knowledge of

the forms and specifics of the target site that the attacker

wants the access from the user.

This site contains a script which can perform an

invalid function on the site A using the sessions of the user

because he is currently active on both the sites. However,

the important part is to dupe the user into clicking the link

through social engineering.

[5]Let's take a scenario where the user is active on site

A and the attacker wants the user to change his password

from a malicious site B.

To achieve this the attacker first needs to get his hands
on the form of site A which changes the password of site A

and create a form of the site B which tricks users on clicking

http://www.ijisrt.com/
http://www.gmail.com/

Volume 5, Issue 11, November – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20NOV496 www.ijisrt.com 657

the link and thus changing the password of site A without

the knowledge of the user.

[6]The form of site looks like this:

<form action="#" method="POST">

<input type="text" name="newpassord" value="">

<input type="text" name="confirmpassword" placeholder =

"newpassword" value="">

<button>Change</button>

</form>

</form>

Notice the action is the address of the page which the

site A takes the user after when he changes the password. If
the attacker manages to put that address and send the user a

link like this :

<form action="https://address_of_changed_password"

method="POST">

 Congratulations You have won a cash prize of

$100000/- click to avail!!!!!</br>

 <input type="hidden" name="newpassword" value="xyz">

 <input type="hidden" name="confirmpassword"

placeholder = "newpassword" value="xyz">

 <button>Change</button>

</form>

If the site manages to change the password then it is

vulnerable to the csrf attack.

IV. IMPLEMENTATION/PREVENTION

For a flawlessly executed CSRF attack, the attacker

should have a thorough knowledge of the varieties of the

methodology used by the site. As a web developer you can

prevent the execution of this attack by using the following

methods:

 Token-Based Authentication

The anti [7] [8] csrf tokens are widely used technology

which is highly recommended and is known to be very

effective against this attack.

By using different hash functionalists the anti csrf code

that you embedded in your page creates a token of certain

fixed length and which always has a different value. Now,

these tokens work on the principle that each page randomly

generates only one token-id at a time and cannot accept two

pages to exist with the same token -id. That is if you refresh
the page a new token will be generated and the previous

token value will be dropped, making it certain that at one

instant only one page with that token value exists on the

internet. Now, when the attacker would try to implement a

phishing link on your site (duplicating the webpage form)

he/she will automatically copy the generated token number

with it. Thus creating a clash on the server which results in

an error suggesting invalid token number because a page of

that token-id value already is in existence.

 Synchronizer token-based:

[9]They are created on a request basis, these are
server-based tokens that are better than session-based tokens

as they furnish a better degree of security. Frequently

session-based tokens are susceptible to browser back refresh

attacks and synchronizer request based tokens prevent such

attacks. On request, the server checks the individualism of

the csrf tokens and upon the validation, with the user

sessions tokens, the requests are conducted if the tokens are

deemed not distinct or legal the requests are not passed.

 Encryption Based:

It utilizes [9] encryption rather than token based

comparison. The server uses a unique key to encrypt tokens
comprising session-id and Timestamp of users, and upon

requesting the server to send the tokens to the user where

these tokens are decrypted and if the decrypted tokens don't

match the values of tokens then they are considered too

meddlesome and rescinded.

 Same Site Cookie Attribute:

The same [9] site cookie attribute studies were whether

or to not transmit cookies to another site. It assists the

browser to choose where to send the cross-site requests

together with the cookies. It always checks before sending
cookies even on regular links. Now, for instance, a GitHub-

like website, this may mean that if a logged-in user pursues

a link to a personal GitHub project posted on a company

discussion forum or email, GitHub won't receive the cookie

and therefore the user won't be able to access the project.

 User-based Authentication:

Sometimes, simple user-based interaction also acts as a

powerful tool against CSRF. User interaction such as:

1.)CAPTCHA

2.)OTP
3.)Re-Authentication

However, a powerful line of defense these mitigations

turn out to, they are not supposed to just implement as the

only line of defense against the attack. They should always

be used as an extra measure of security.

 Login Forms:

Developers [9] frequently speculate that login forms

are secure enough and need not be a spur to worry about the

csrf attack, but on the contrary login, forms are also equally
at risk to this attack. An attacker can effortlessly copy forms

and bait users to log in again retrieving passwords and other

sensitive information. Login forms can be prevented using

pre-sessions and adding csrf tokens.

 Don't use method override:

Several applications are presently using [10] method-

override functions to use PUT, PATCH, and DELETE

requests for the usage of forms. This as a result the requests

which weren't vulnerable before now vulnerable hence could

cause vast damage.

http://www.ijisrt.com/
https://address_of_changed_password/

Volume 5, Issue 11, November – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20NOV496 www.ijisrt.com 658

For a flawlessly executed XSS attack, as a web

developer you can prevent the execution of this attack by
using the following methods:

1 - Never enter any data which cannot be trusted. Like, in a

script tag

<script>Never enter data cannot be trusted</script>

2- Encode the HTML data before inserting any untrusted

data in the HTML Element Content

eg. <body>Encode data before putting</body>

<div>Encode data before putting</div>

3- Encode the JavaScript data before inserting any untrusted

Data in the JavaScript values.

4- You can sanitize the code by using the express-sanitizer

package to avoid the usage of the script tag.
5 - Avoid using untrusted JavaScript URLs. Like, href tags

or iframe tags.

In the end, make sure that you validate all the

untrusted URLs so that they contain only safe schemes like

HTTPS.

V. CONCLUSION

The csrf and xss attacks are not to be ignored. These

attacks, seems simple but can cause a prolific amount of
damage to your systems, resulting in data breaches, frauds

etc. They prevail today because most developers are not

concerned with the security of the web application. Another

reason for this attack is the lack of knowledge about

cybercrimes among the users, due to which they are fall prey

to social engineering attacks. Proper mitigation is

unequivocally important for secure use of applications.

REFERENCES

[1]. https://www.netsparker.com/blog/websecurity/csrf-

cross-site-request-forgery/
[2]. “Survey on Cross Site Request Forgery (An Overview

of CSRF)”By Sentamilselvan K, Dr.S.Lakshamana

Pandian

[3]. https://en.wikipedia.org/wiki/Cross-

site_request_forgery

[4]. https://d1wqtxts1xzle7.cloudfront.net/50582893/ICCS

N.

[5]. Hackersploit (YouTube channel)

https://www.youtube.com/channel/UC0ZTPkdxlAKf-

V33tqXwi3Q

[6]. OWASP CSRF https://owasp.org/www-
community/attacks/csrf#:~:text=Cross%2DSite%20Re

quest%20Forgery%20(CSRF)%20is%20an%20attack

%20that,response%20to%20the%20forged%20request

[7]. ”Robust Defenses for Cross Site Request Forgery”

Adam Barth, Collin Jackson, John C.

Mitchell(Stanford University).

[8]. “Assessment of vulnerabilities of web applications of

Bangladesh: A case study of XSS and CSRF” By

TanjilaFarah

[9]. https://cheatsheetseries.owasp.org/cheatsheets/Cross-

Site_Request_Forgery_Prevention_Cheat_Sheet.html
[10]. “A study of effectiveness of CSRF Guard” By Boyan

Chen, PavolZavarsky, Ron Duhl and Dane Lindskog

[11]. “Evaluation of Static Web Vulnerability Analysis

Tools” By ShobhaTyagi, and KrishanKumar.
[12]. https://news.hitb.org/

[13]. https://portswigger.net/

[14]. “Testing and comparing web vulnerability scanning

tools for SQL injection and XSS attacks” By José

Fonseca, Marco Vieira and Henrique Madeira

[15]. “SWAP: Mitigating XSS Attacks using a Reverse

Proxy” By Peter Wurzinger, Christian Platzer,

Christian Ludl, EnginKirda , and Christopher Kruegel.

[16]. “Cross-Site Scripting (XSS) attacks and defense

mechanisms: classification and state-of-the-art” By

Shashank Gupta, B. B. Gupta

http://www.ijisrt.com/
https://www.netsparker.com/blog/websecurity/csrf-cross-site-request-forgery/
https://www.netsparker.com/blog/websecurity/csrf-cross-site-request-forgery/
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://d1wqtxts1xzle7.cloudfront.net/50582893/ICCSN
https://d1wqtxts1xzle7.cloudfront.net/50582893/ICCSN
https://www.youtube.com/channel/UC0ZTPkdxlAKf-V33tqXwi3Q
https://www.youtube.com/channel/UC0ZTPkdxlAKf-V33tqXwi3Q
https://owasp.org/www-community/attacks/csrf#:~:text=Cross%2DSite%20Request%20Forgery%20(CSRF)%20is%20an%20attack%20that,response%20to%20the%20forged%20request
https://owasp.org/www-community/attacks/csrf#:~:text=Cross%2DSite%20Request%20Forgery%20(CSRF)%20is%20an%20attack%20that,response%20to%20the%20forged%20request
https://owasp.org/www-community/attacks/csrf#:~:text=Cross%2DSite%20Request%20Forgery%20(CSRF)%20is%20an%20attack%20that,response%20to%20the%20forged%20request
https://owasp.org/www-community/attacks/csrf#:~:text=Cross%2DSite%20Request%20Forgery%20(CSRF)%20is%20an%20attack%20that,response%20to%20the%20forged%20request
https://seclab.stanford.edu/websec/csrf/csrf.pdf:Adam
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://news.hitb.org/
https://portswigger.net/

	[14]. “Testing and comparing web vulnerability scanning tools for SQL injection and XSS attacks” By José Fonseca, Marco Vieira and Henrique Madeira

