
Volume 5, Issue 10, October – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20OCT608 www.ijisrt.com 959

Comparative Analysis of Optimizers in Deep Neural

Networks

Chitra Desai
Professor

Department of Computer Science

National Defence Academy, Pune, India

Abstract:- The role of optimizer in deep neural networks

model impacts the accuracy of the model. Deep learning

comes under the umbrella of parametric approaches;

however, it tries to relax as many as assumptions as

possible. The process of obtaining parameters from the

data is gradient descent. Gradient descent is the chosen

optimizer in neural network and many of the machine

learning algorithms. The classical stochastic gradient

descent (SGD) and SGD with momentum which were

used in deep neural networks had several challenges

which were attempted to resolve using adaptive learning

optimizers. Adaptive learning algorithms like-

RMSprop, Adagrad, Adam wherein learning rate for

each parameter is computed were further developments

for better optimizer. Adam optimizer in Deep Neural

Networks is often a default choice observed recently.

Adam optimizer is a combination of RMSprop and

momentum. Though, Adam since its introduction has

gained popularity, there are claims that report

convergence problem with Adam optimizer. Also, it is

advocated that SGD with momentum gives better

performance compared to Adam. This paper presents

comparative analysis of SGD, SGD with momentum,

RMSprop, Adagrad and Adam optimizer on Seattle

weather dataset.The Seattle weather dataset, was

processed assuming Adam optimizer will prove to be the

better optimizer choice as preferred a default choice by

many, however, SGD with momentum proved to be a

unsurpassed optimizer for this particular dataset.

Keywords:- Gradient Descent, SGD with momentum

RMSprop, Adagrad and Adam.

I. INTRODUCTION

Deep learning algorithms involve optimizations.

Optimization refers to minimizing or maximizing an

objective function, which, is also called cost function or loss

function. Given a training dataset for deep neural network,

there are attempts to find optimal parameters () that

significantly reduce the cost function J (). Gradient descent

can be used in deep neural network to find the optimal

parameters [1].

Training deep learning models are iterative and requires

initial point to be specified to start with and it is this

initialization that strongly affects most algorithm [2]. The

classical Stochastic Gradient Descent (SGD) [3] and SGD

with momentum have proven track of their suitability for

learning deep neural network. Enhancement to existing
techniques is inevitable and so came set of adaptive learning

methods.

Adaptive learning methods were developed over a

period of time to claim their supremacy over classical SGD

and SGD with momentum. However, several studies

[4][5][6]show that SGD with momentum proved

comparatively better than the adaptive learning methods in

particular Adam optimizer which tends to be a default choice.

The paper aims at analyzing the performance of deep

neural network by applying different optimizer to the chosen
dataset.

The dataset is divided into training set and test set. The

deep neural network is trained on the training data and tested

on the test data.

The paper does not cover the underlying data

preprocessing and deep neural network, the focus here is on

minimizing the training and validation loss and observing the

testing loss by changing optimizers. The optimizer used for

comparative study in this paper are SGD, RMSprop,
Adagrad, SGD with momentum and Adam.

II. DATA AND DATA PRE-PROCESSING

The dataset for study used is Seattle, US weather

dataset [7]. It is labelled dataset which consists of 4 feature

variables – DATE, PRCP, TMAX and TMIN and one target

variable RAIN which is categorical having value {0,1}. The

dataset contains 25552 records of daily rainfall patterns from

1st Jan 1948 to 12th Dec 2017. The data is preprocessed to

provide input to the deep neural network by checking for

duplicates, removing null values and splitting of DATE
column DAY, MON and YEAR. Table 1 shows the sample

data after splitting the column. Scaling applied to the data is

standardization. Data is split into train and test with a ratio

of 80:20.

http://www.ijisrt.com/
https://towardsdatascience.com/stochastic-gradient-descent-with-momentum-a84097641a5d
https://towardsdatascience.com/stochastic-gradient-descent-with-momentum-a84097641a5d

Volume 5, Issue 10, October – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20OCT608 www.ijisrt.com 960

TABLE 1. SAMPLE DATA AFTER SPLITTING DATE COLUMN

The elaborated details of data pre-processing for

Seattle weather data set and the Deep neural architecture as

presented in next session can be referred at [8].

III. DNN ARCHITECTURE DESIGN

The overall structure of the deep neural network
organized into layers to study the impact of different

optimizers is presented here. Deep sequential model is used,

the summary of it is shown in table 1. There are six input

features for the Seattle weather dataset. The shape of the

weights depends upon the shape of the input. The target

variable is binary with output either 0 or 1. At hidden layers

ReLu [9] activation function is used at hidden layers and

sigmoid function is used that output layer. Weights are

initialized using uniform optimizers.

Model is compiled by setting the learning rate to 0.001,
which is chosen by observing the learning curve by plotting

the objective function as a function of time. As the problem

belongs to the class of binary classification, the loss is

calculated using cross entropy. The batch size is set to 64 and

epoch to 10.

The data is scaled and split into training and test data.

The model is initialized and then with different optimizers

the model fit to analyze the performance with respect to each

optimizer under study.

TABLE 2 MODEL SUMMARY

Layer (type) Output Shape Param #

dense_1 (Dense) (None, 6) 42

dense_2 (Dense) (None, 4) 28

dense_3 (Dense) (None, 1) 5

Total Params: 75
Trainable params: 75

Non-trainable params: 0

IV. GRADIENT DESCENT

Given function 𝑦 = 𝑓(𝑥), where 𝑥 and 𝑦 are some real

numbers. The derivative
𝑑𝑦

𝑑𝑥
 of the function 𝑓(𝑥) gives the

slope of 𝑓(𝑥) at a point 𝑥. Derivative is useful in minimizing

the function as it tells how a small change in input 𝑥, makes

corresponding change in the output 𝑦. To reduce 𝑓(𝑥), we

can move 𝑥 in small steps in opposite direction of the
derivative. This technique is known as Gradient Descent

[10].

Gradient descent is the way to minimize objective

function by updating model’s parameter in the opposite

direction of the gradient. When the derivative of the function

𝑓(𝑥) is zero, then it provides no information of the direction

to move, this point is known as critical point [2]. So, a critical

point is a point with slope zero. When the critical point is
lower than the neighboring points, then it is local minima.

When the critical point is higher than the neighboring points

then it is local maxima. When the critical point has both

higher and lower points in its neighboring than it is called

saddle point.

Gradient descent is effective for training neural network

based on small local moves and reaching the global solution.

In gradient descent the weights are updated incrementally

after each epoch. There are limits on the performance of any

optimization algorithm that are designed for neural network

[11]. There are variants of gradient descent [12] and in this
paper we discuss SGD, SGD with momentum, RMSprop,

Adagrad, and Adam optimizers for analyzing their

performance in terms of test accuracy.

V. OPTIMIZERS

For large training set Stochastic Gradient Descent

(SGD) [13]is considered as good learning algorithm to train

neural networks [10]. It updates the parameters using single

or very few parameters, where the new update parameter is

given by eq.1, here xi and yi are from the training set. It helps

to reduce the variance and lead to stable convergence. α is

the learning rate.

 = − α∇J(; xi, yi) (1)

If the objective is shallow SGD may tend to oscillate.

This problem can be overcome by adding momentum to

SGD. is the current velocity.γ∈(0,1] determines number of

iterations of the previous gradients are incorporated into the
current update.

 = + α∇J(; xi, yi) (2)

 = − (3)

While implementing SGD with momentum the value of

momentum is set to 0.9 during the experiment.

The Adagrad [14] adapts all model parameters by
scaling them inversely proportional to the square root of the

sum of all the historical squared values of gradient. While

training DNN models, from the beginning of training if the

PRCP TMAX TMIN RAIN YEAR MON DAY

0.47 51 42 1 1948 1 1

0.59 45 36 1 1948 1 2

0.42 45 35 1 1948 1 3

0.31 45 34 1 1948 1 4

0.17 45 32 1 1948 1 5

http://www.ijisrt.com/

Volume 5, Issue 10, October – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20OCT608 www.ijisrt.com 961

squared gradient starts accumulating, it may lead to

premature and excessive decrease in the effective learning
rate.

RMSprop [15] is an improvement over Adagrad by

changing the gradient accumulation into an exponentially

weighted moving average.

Adam optimizer [16] short for ‘adaptive moments’ is

considered as a variant of RMSprop and momentum with

few variations. It is computationally efficient and requires

very less memory. Adam includes bias correction, RMSprop

lacks correction factor.

VI. RESULTS

In this section the results obtained for each optimizer

are presented.

A. SGD and SGD with Momentum

Table 3 shows the results for SGD and SGD

withmomentum.

TABLE 3. SGD AND SGD WITH MOMENTUM

Optimizer Learning Rate Momentum Test Loss Test Accuracy Model Training

Time (Sec)

SGD 0.01 - 0.2160 0.9337 2.54

SGD 0.001 - 0.2007 0.9364 2.34

SGD with

Momentum

0.01 0.9 0.0115 0.9992 2.11

It is observed that no significant change in model

performance is observed with change in learning rate from

0.01 to 0.001 in SGD. The time taken to train the model is

comparatively less with learning rate 0.001.

FIGURE 1 MODEL ACCURACY AND MODEL LOSS FOR SGD

WITH LEARNING RATE 0.01

FIGURE 2 MODEL ACCURACY AND MODEL LOSS WITH

LEARNING RATE 0.001

FIGURE 3 MODEL ACCURACY AND MODEL LOSS FOR SGD

WITH MOMENTUM

In case of SGD with momentum a significant increase

in test accuracy observed compared to SGD and time taken

for training is also lowest. Figure 1,2 and 3 shows the

accuracy and loss with respect training and validation data

over 10 epochs while the model is being trained.

B. Adaptive Learning Algorithms

Table 4 shows the results for adaptive learning

algorithms-Adagrad, RMSprop and Adam optimizers. From
all the three algorithms it is observed that the model performs

best with Adam optimizer. However, time taken to train the

model Adagrad is low.

TABLE 4 ADGRAD, RMSPROP AND ADAM

Optimizer Learning

Rate

Test

Loss

Test

Accuracy

Model

Training

Time

(Sec)

Adagrad 0.01 0.2667 0.8963 2.12

RMSprop 0.01 0.1407 0.9505 2.28

Adam 0.01 0.0837 0.9771 2.26

Figure 4,5 and 6 shows the accuracy and loss for the

training and validation data for Adagrad, RMSprop and

Adam optimizer respectively. The blue line indicates the
training data and the orange indicate the validation data in

each of the figure above.

FIGURE 4 MODEL ACCURACY AND MODEL LOSS FOR

ADAGRAD

http://www.ijisrt.com/

Volume 5, Issue 10, October – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20OCT608 www.ijisrt.com 962

FIGURE 5 MODEL ACCURACY AND MODEL LOSS OR

RMSPROP

FIGURE 6 MODEL ACCURACY AND MODEL LOSS FOR ADAM

VII. CONCLUSION

The paper presented the impact of different optimizers

on the chosen labeled data set. The comparison was mainly

aimed to ensure that for labeled data set a default choice of

Adam, which a adaptive learning algorithm will give best

model performance. However, when SGD with momentum

was used, it gave comparatively better result then the

adaptive learning algorithms and in particular Adam

optimizer. The model training time was also the lowest for

SGD with momentum compared to other optimizers.

REFERENCES

[1]. S. S. Du, J. D. Lee, H. Li, L. Wang, and X. Zhai,

“Gradient descent finds global minima of deep neural

networks,” ICML, arXiv:1811.03804, 2018.

[2]. Ian Goodfellow, Yoshua Bengio and Aaron Courville,

Deep Learning, MIT Press, 2016

[3]. Robbins, H., & Monro, S. (1951). A stochastic

approximation method. The annals of mathematical

statistics, 400-407

[4]. Huang, G., Liu, Z., Weinberger, K. Q., & van der

Maaten, L. (2017). Densely Connected Convolutional

Networks. In Proceedings of CVPR 2017
[5]. Wu, Y., Schuster, M., Chen, Z., Le, Q. V, Norouzi, M.,

Macherey, W., Dean, J. (2016). Google’s Neural

Machine Translation System: Bridging the Gap

between Human and Machine Translation. arXiv

Preprint arXiv:1609.08144.

[6]. Wilson, A. C., Roelofs, R., Stern, M., Srebro, N., &

Recht, B. (2017). The Marginal Value of Adaptive

Gradient Methods in Machine Learning. arXiv Preprint

arXiv:1705.08292. Retrieved

from http://arxiv.org/abs/1705.08292

[7]. https://www.kaggle.com/rtatman/did-it-rain-in-seattle-
19482017

[8]. Chitra Desai, “ Rainfall Prediction Using Deep Neural

Network,” unpublished
[9]. D. Zou, Y. Cao, D. Zhou, and Q. Gu, “Stochastic

gradient descent optimizes over-parameterized deep

relu networks,” arXiv preprint arXiv:1811.08888,

2018.

[10]. A. Cauchy. Methodes generales pour la resolution des

syst‘emes dequations simultanees,. C.R. Acad. Sci.

Par., 25:536–538, 1847.

[11]. AVRIM L. BLUM* AND RONALD L. RIVEST, “

Training a 3-Node Neural Network is NP-Complete”,

Neural Networks, Vol. 5, pp. 117-127, 1992

[12]. Ruder, S. (2016). An overview of gradient descent

optimization algorithms. arXiv
preprint arXiv:1609.04747..

[13]. Bottou L. (2012) Stochastic Gradient Descent Tricks.

In: Montavon G., Orr G.B., Müller KR. (eds) Neural

Networks: Tricks of the Trade. Lecture Notes in

Computer Science, vol 7700. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-642-35289-

8_25

[14]. Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive

Subgradient Methods for Online Learning and

Stochastic Optimization. Journal of Machine Learning

Research, 12, 2121–2159.
[15]. Geoffrey Hinton Neural Networks for machine

learning nline course.

https://www.coursera.org/learn/neural-

networks/home/welcome

[16]. Diederik P. Kingma and Jimmy Lei Ba. Adam: A

method for stochastic optimization. 2014.

arXiv:1412.6980v9 (2014)

http://www.ijisrt.com/
https://arxiv.org/abs/1705.08292
https://www.kaggle.com/rtatman/did-it-rain-in-seattle-19482017
https://www.kaggle.com/rtatman/did-it-rain-in-seattle-19482017
https://arxiv.org/abs/1609.04747
file:///C:/Users/hp/Downloads/Geoffrey%20Hinton%20Neural%20Networks%20for%20machine%20learning%20nline%20course.%20https:/www.coursera.org/learn/neural-networks/home/welcome
file:///C:/Users/hp/Downloads/Geoffrey%20Hinton%20Neural%20Networks%20for%20machine%20learning%20nline%20course.%20https:/www.coursera.org/learn/neural-networks/home/welcome
file:///C:/Users/hp/Downloads/Geoffrey%20Hinton%20Neural%20Networks%20for%20machine%20learning%20nline%20course.%20https:/www.coursera.org/learn/neural-networks/home/welcome
file:///C:/Users/hp/Downloads/Geoffrey%20Hinton%20Neural%20Networks%20for%20machine%20learning%20nline%20course.%20https:/www.coursera.org/learn/neural-networks/home/welcome
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

	I. INTRODUCTION
	II. DATA AND DATA PRE-PROCESSING
	III. DNN ARCHITECTURE DESIGN
	IV. GRADIENT DESCENT
	V. OPTIMIZERS
	VI. RESULTS
	A. SGD and SGD with Momentum
	B. Adaptive Learning Algorithms

	VII. CONCLUSION
	REFERENCES

