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Abstract:- The role of optimizer in deep neural networks 

model impacts the accuracy of the model. Deep learning 

comes under the umbrella of parametric approaches; 

however, it tries to relax as many as assumptions as 

possible. The process of obtaining parameters from the 

data is gradient descent. Gradient descent is the chosen 

optimizer in neural network and many of the machine 

learning algorithms. The classical stochastic gradient 

descent (SGD) and SGD with momentum which were 

used in deep neural networks had several challenges 

which were attempted to resolve using adaptive learning 

optimizers. Adaptive learning algorithms like- 

RMSprop, Adagrad, Adam wherein learning rate for 

each parameter is computed were further developments 

for better optimizer. Adam optimizer in Deep Neural 

Networks is often a default choice observed recently. 

Adam optimizer is a combination of RMSprop and 

momentum. Though, Adam since its introduction has 

gained popularity, there are claims that report 

convergence problem with Adam optimizer. Also, it is 

advocated that SGD with momentum gives better 

performance compared to Adam. This paper presents 

comparative analysis of SGD, SGD with momentum, 

RMSprop, Adagrad and Adam optimizer on Seattle 

weather dataset.The Seattle weather dataset, was 

processed assuming Adam optimizer will prove to be the 

better optimizer choice as preferred a default choice by 

many, however, SGD with momentum proved to be a 

unsurpassed optimizer for this particular dataset. 
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I. INTRODUCTION 

 

Deep learning algorithms involve optimizations. 

Optimization refers to minimizing or maximizing an 

objective function, which, is also called cost function or loss 

function. Given a training dataset for deep neural network, 

there are attempts to find optimal parameters () that 

significantly reduce the cost function J (). Gradient descent 

can be used in deep neural network to find the optimal 

parameters [1].  

 

Training deep learning models are iterative and requires 

initial point to be specified to start with and it is this 

initialization that strongly affects most algorithm [2]. The 

classical Stochastic Gradient Descent (SGD) [3] and SGD 

with momentum have proven track of their suitability for 

learning deep neural network. Enhancement to existing 
techniques is inevitable and so came set of adaptive learning 

methods. 

 

Adaptive learning methods were developed over a 

period of time to claim their supremacy over classical SGD 

and SGD with momentum. However, several studies 

[4][5][6]show that SGD with momentum proved 

comparatively better than the adaptive learning methods in 

particular Adam optimizer which tends to be a default choice.  

 

The paper aims at analyzing the performance of deep 

neural network by applying different optimizer to the chosen 
dataset. 

 

The dataset is divided into training set and test set. The 

deep neural network is trained on the training data and tested 

on the test data. 

 

The paper does not cover the underlying data 

preprocessing and deep neural network, the focus here is on 

minimizing the training and validation loss and observing the 

testing loss by changing optimizers. The optimizer used for 

comparative study in this paper are SGD, RMSprop, 
Adagrad, SGD with momentum and Adam. 

 

II. DATA AND DATA PRE-PROCESSING 

 

The dataset for study used is Seattle, US weather 

dataset [7]. It is labelled dataset which consists of 4 feature 

variables – DATE, PRCP, TMAX and TMIN and one target 

variable RAIN which is categorical having value {0,1}. The 

dataset contains 25552 records of daily rainfall patterns from 

1st Jan 1948 to 12th Dec 2017. The data is preprocessed to 

provide input to the deep neural network by checking for 

duplicates, removing null values and splitting of DATE 
column DAY, MON and YEAR. Table 1 shows the sample 

data after splitting the column. Scaling applied to the data is 

standardization. Data is split into train and test with a ratio 

of 80:20. 

 

 

 

 

http://www.ijisrt.com/
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TABLE 1. SAMPLE DATA AFTER SPLITTING DATE COLUMN 

 

The elaborated details of data pre-processing for 

Seattle weather data set and the Deep neural architecture as 

presented in next session can be referred at [8]. 

 

III. DNN ARCHITECTURE DESIGN 

 

The overall structure of the deep neural network 
organized into layers to study the impact of different 

optimizers is presented here. Deep sequential model is used, 

the summary of it is shown in table 1. There are six input 

features for the Seattle weather dataset. The shape of the 

weights depends upon the shape of the input. The target 

variable is binary with output either 0 or 1. At hidden layers 

ReLu [9] activation function is used at hidden layers and 

sigmoid function is used that output layer. Weights are 

initialized using uniform optimizers. 

 

Model is compiled by setting the learning rate to 0.001, 
which is chosen by observing the learning curve by plotting 

the objective function as a function of time. As the problem 

belongs to the class of binary classification, the loss is 

calculated using cross entropy. The batch size is set to 64 and 

epoch to 10. 

 

The data is scaled and split into training and test data. 

The model is initialized and then with different optimizers 

the model fit to analyze the performance with respect to each 

optimizer under study. 

 

TABLE 2  MODEL SUMMARY 

Layer (type) Output Shape Param # 

dense_1 (Dense) (None, 6) 42 

dense_2 (Dense) (None, 4) 28 

dense_3 (Dense) (None, 1) 5 

Total Params: 75 
Trainable params: 75 

Non-trainable params: 0 

 

IV. GRADIENT DESCENT 

 

Given function 𝑦 = 𝑓(𝑥), where 𝑥 and 𝑦 are some real 

numbers. The derivative 
𝑑𝑦

𝑑𝑥
 of the function 𝑓(𝑥) gives the 

slope of 𝑓(𝑥) at a point 𝑥. Derivative is useful in minimizing 

the function as it tells how a small change in input 𝑥, makes 

corresponding change in the output 𝑦. To reduce 𝑓(𝑥), we 

can move  𝑥 in small steps in opposite direction of the 
derivative. This technique is known as Gradient Descent 

[10]. 

 

 

Gradient descent is the way to minimize objective 

function by updating model’s parameter in the opposite 

direction of the gradient. When the derivative of the function 

𝑓(𝑥) is zero, then it provides no information of the direction 

to move, this point is known as critical point [2]. So, a critical 

point is a point with slope zero. When the critical point is 
lower than the neighboring points, then it is local minima. 

When the critical point is higher than the neighboring points 

then it is local maxima. When the critical point has both 

higher and lower points in its neighboring than it is called 

saddle point. 

 

Gradient descent is effective for training neural network 

based on small local moves and reaching the global solution. 

In gradient descent the weights are updated incrementally 

after each epoch. There are limits on the performance of any 

optimization algorithm that are designed for neural network 

[11]. There are variants of gradient descent [12] and in this 
paper we discuss SGD, SGD with momentum, RMSprop, 

Adagrad, and Adam optimizers for analyzing their 

performance in terms of test accuracy. 

 

V. OPTIMIZERS 

 

For large training set Stochastic Gradient Descent 

(SGD) [13]is considered as good learning algorithm to train 

neural networks [10]. It updates the parameters using single 

or very few parameters, where the new update parameter is 

given by eq.1, here xi and yi are from the training set. It helps 

to reduce the variance and lead to stable convergence. α is 

the learning rate.   

 

 = − α∇J(; xi, yi)  (1) 

 

If the objective is shallow SGD may tend to oscillate. 

This problem can be overcome by adding momentum to 

SGD.  is the current velocity.γ∈(0,1] determines number of 

iterations of the previous gradients are incorporated into the 
current update. 

 

 = + α∇J(; xi, yi) (2) 

 

 = −    (3) 

 

While implementing SGD with momentum the value of 

momentum is set to 0.9 during the experiment. 

 

The Adagrad [14] adapts all model parameters by 
scaling them inversely proportional to the square root of the 

sum of all the historical squared values of gradient. While 

training DNN models, from the beginning of training if the 

PRCP TMAX TMIN RAIN YEAR MON DAY 

0.47 51 42 1 1948 1 1 

0.59 45 36 1 1948 1 2 

0.42 45 35 1 1948 1 3 

0.31 45 34 1 1948 1 4 

0.17 45 32 1 1948 1 5 

http://www.ijisrt.com/
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squared gradient starts accumulating, it may lead to 

premature and excessive decrease in the effective learning 
rate. 

 

RMSprop [15] is an improvement over Adagrad by 

changing the gradient accumulation into an exponentially 

weighted moving average. 

 

Adam optimizer [16] short for ‘adaptive moments’ is 

considered as a variant of RMSprop and momentum with 

few variations. It is computationally efficient and requires 

very less memory. Adam includes bias correction, RMSprop 

lacks correction factor.  
 

VI. RESULTS 

 

In this section the results obtained for each optimizer 

are presented. 

 

A. SGD and SGD with Momentum 

Table 3 shows the results for SGD and SGD 

withmomentum. 

 

TABLE 3. SGD AND SGD WITH MOMENTUM 

 

Optimizer Learning Rate Momentum Test Loss Test Accuracy Model Training 

Time (Sec) 

SGD 0.01 - 0.2160 0.9337 2.54 

SGD 0.001 - 0.2007 0.9364 2.34 

SGD with 

Momentum 

0.01 0.9 0.0115 0.9992 2.11 

 

It is observed that no significant change in model 

performance is observed with change in learning rate from 

0.01 to 0.001 in SGD. The time taken to train the model is 

comparatively less with learning rate 0.001. 

 

 
FIGURE 1 MODEL ACCURACY AND MODEL LOSS FOR SGD 

WITH LEARNING RATE 0.01 

 

 
FIGURE 2 MODEL ACCURACY AND MODEL LOSS WITH 

LEARNING RATE 0.001 

 

 
FIGURE 3 MODEL ACCURACY AND MODEL LOSS FOR SGD 

WITH MOMENTUM 

 

In case of SGD with momentum a significant increase 

in test accuracy observed compared to SGD and time taken 

for training is also lowest. Figure 1,2 and 3 shows the 

accuracy and loss with respect training and validation data 

over 10 epochs while the model is being trained. 

 

B. Adaptive Learning Algorithms 

Table 4 shows the results for adaptive learning 

algorithms-Adagrad, RMSprop and Adam optimizers. From 
all the three algorithms it is observed that the model performs 

best with Adam optimizer. However, time taken to train the 

model Adagrad is low. 

 

TABLE 4 ADGRAD, RMSPROP AND ADAM 

Optimizer Learning 

Rate 

Test 

Loss 

Test 

Accuracy 

Model 

Training 

Time 

(Sec) 

Adagrad 0.01 0.2667 0.8963 2.12 

RMSprop 0.01 0.1407 0.9505 2.28 

Adam 0.01 0.0837 0.9771 2.26 

 

Figure 4,5 and 6 shows the accuracy and loss for the 

training and validation data for Adagrad, RMSprop and 

Adam optimizer respectively. The blue line indicates the 
training data and the orange indicate the validation data in 

each of the figure above.  

 

 
FIGURE 4 MODEL ACCURACY AND MODEL LOSS FOR 

ADAGRAD 
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FIGURE 5 MODEL ACCURACY AND MODEL LOSS OR 

RMSPROP 

 

 
FIGURE 6 MODEL ACCURACY AND MODEL LOSS FOR ADAM 

 

 

VII. CONCLUSION 

 
The paper presented the impact of different optimizers 

on the chosen labeled data set. The comparison was mainly 

aimed to ensure that for labeled data set a default choice of 

Adam, which a adaptive learning algorithm will give best 

model performance. However, when SGD with momentum 

was used, it gave comparatively better result then the 

adaptive learning algorithms and in particular Adam 

optimizer. The model training time was also the lowest for 

SGD with momentum compared to other optimizers.  
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