
Volume 5, Issue 9, September – 2020                                    International Journal of  Innovative Science and Research Technology                                                 

                                         ISSN No:-2456-2165 

 

IJISRT20SEP344                                                               www.ijisrt.com                   1301 

Machine Learning for Automation Software Testing 

Challenges, Use Cases Advantages & Disadvantages 
 

 
Ashritha S 

Dept. of Information & Science Engineering 

R v College of Engineering 

Bangalore, India 

 

 

Dr. Padmashree T 

Dept. of Information & Science Engineering 

R v College of Engineering 

Bangalore, India 

 

Abstract:- Software testing is a method for checking and 

validating an automated system's ability to fulfill the 

automation's necessary attributes and functionality with 

the automation. It is an essential part of software 

development that is vital to ensuring the quality of a 

product to be released. The need for automated software 

testing approaches arises as the operating structures 

become more complex which requires analyzing software 

systems behavior to discover faults. Many testing 

activities are expensive and complex, and the automation 

of software testing is a realistic approach that has been 

implemented to get around these problems. At the 

beginning, when the Waterfall project approach was 

already commonly applied, testing was introduced to 

validate the program as an end-of-project solution only 

before it entered the market. Since then, project 

methodologies have also evolved, integrating the ever-

popular Agile, DevOps, and others, requiring more 

versatile and innovative methods. Machine learning 

(ML) is one of the new approach introduced to use the 

groundbreaking technology made possible. Machine 

Learning is established from the study of pattern 

recognition and computational learning approach. The 

main principle reason is to make machines learn without 

being explicitly programmed. This science absorbs tons 

of complex data and identifies schemes that are 

predictive. In this paper, review the state-of-the-art ways 

in which ML is explored for automating and upgrading 

software testing is set. And include an overview of the 

use cases of test automation, an advantage in 

implementing ML automation techniques along with 

challenges in current automation testing. The aftereffects 

of this paper plot the ML viewpoint that are most 

regularly used to automate software-testing exercises, 

helping analysts to comprehend the ebb and flow 

condition of research concerning ML applied to software 

testing. Its strategies have demonstrated to be very 

valuable for this automation process and there has been 

a developing enthusiasm for applying machine learning 

to mechanize different software testing activities. 

 

Keywords:- Machine learning (ML), Software testing, 

Challenges, Use cases of ML based test automation. 

 

 

 

 

 

I. INTRODUCTION 

 

Most early software applications belonged to the scientific 

computing and data processing domains [1]. Over the past 

few decades, however, there has been a substantial growth 
in the software industry, which was primarily driven by 

advances in technology. Consequently, software has become in-

creasingly important in modern society. As software becomes 

more pervasive in everyday life, software engineers must meet 

stringent requirements to obtain reliable software. To keep up 

with all these advances, software engineering has come a 

long way since its inception. Yet, many software projects still 

fail to meet expectations due to a combination of factors as, for 

instance, cost overruns and poor quality. Evidence suggests 

that one of the factors that contribute the most to budget 

overruns is fault detection and fault correction: uncorrected 

faults become increasingly more expensive as software projects 
evolve. To mitigating such overheads, there has been a 

growing interest in software testing, which is the primary 

method to evaluate software under development [3]. 

 

Software testing plays a pivotal role in both achieving 

and evaluating the quality of software. Despite all the 

advances in software development methodologies and 

programming languages, software testing remains necessary. 

Basically, testing is a process whose purpose is to make sure 

that the software artifacts under test do what they were 

designed to do and that they do not do anything unintended, 
thus raising the quality of these artifacts [4]. Nevertheless, 

testing is costly, resource consuming, and notoriously complex: 

studies indicate that testing accounts for more than 50% of the 

total costs of software development [5]. Moreover, as any 

human-driven activity, testing is error-prone and creating 

reliable software systems is still an open problem. In hopes of 

coping with this problem, researchers and practitioners have 

been investigating more effective ways of testing software. 

A practical strategy for facing some of the issues is to 

automate software testing. Thus, a lot of effort has been put 

into automating testing activities. ML techniques have been 

successfully used to reduce the effort of carrying out many 
software engineering activities [8]. Machine learning [9], 

which is a research field at the intersection of ML, computer 

science, and statistics, has been applied to automate various 

software engineering activities [10]. It turns out that some 

software-testing issues lend themselves to being formulated as 

learning problems and tackled by learning algorithms, so 

there has been a growing interest in capitalizing on ML to 

automate and streamline software testing. In addition, software 

http://www.ijisrt.com/


Volume 5, Issue 9, September – 2020                                    International Journal of  Innovative Science and Research Technology                                                 

                                         ISSN No:-2456-2165 

 

IJISRT20SEP344                                                               www.ijisrt.com                   1302 

systems have become increasingly complex, so some 

conventional testing techniques may not scale well to the 
complexity of these modern software systems. This ever-

increasing complexity of modern software systems has 

rendered ML-based techniques attractive.  

 

II. BACKGROUND 

 

This section covers background on software testing 

and ML. The discussion is divided into two parts: the first 

covers the pure- pose of software testing, giving special 

emphasis to elucidating the most fundamental concepts; the 

second part lays out the essential background on ML. 

 
A. Software Testing 

Software testing is a quality confirmation action that 

comprises in assessing the framework under test by watching 

its execution with the point of uncovering failures. A 

disappointment is identified when the outer conduct is not 

quite the same as what is anticipated from the test as 

indicated by its prerequisites or some other depiction of the 

normal conduct [3]. Since this action re-quires the execution, 

it is regularly alluded to as powerful examination. 

Conversely, there are quality affirmation exercises that don't 

require the execution [5].  
 

A significant component of the testing action is the 

experiment. Basically, an experiment indicates in which 

conditions of the test must be executed to find a failure. At 

the point when an experiment uncovers a disappointment, it 

is viewed as fruitful (or successful). An experiment typifies 

the information esteems expected to execute the test [3]. 

Along these lines, experiment inputs change in nature, going 

from client contributions to technique calls with the 

experiment esteems as parameters. To assess the aftereffects 

of experiments, analyzers must realize what yield the test 

would deliver for those experiments. The component that 
checks the accuracy of the yields delivered is alluded to as 

prophet. For the most part, analyzers assume the job of 

prophet. Be that as it may, it merits stressing that a prophet 

can be a determination or much another program. 

 

Executing experiments physically is expensive, tedious, 

and mistake inclined. In this manner, many testing systems 

and instruments have been created along the years with the 

goal of supporting the mechanized execution of experiments 

at various levels. Testing systems that help unit testing have 

been generally utilized particularly because of the 
advancement of nimble philosophies and test-centered 

methodologies. More as of late, many record-and-play or 

even content based systems and instruments to perform 

graphical UI (GUI) testing have gotten increasingly well 

known among engineers. Even though automating the 

execution of experiments spoke to a huge improvement in the 

field, programming testing exercises will in general become 

progressively troublesome and exorbitant as frameworks 

become progressively increasingly mind boggling. The 

exemplary answer of programming specialists to lessen cost 

and unpredictability is automation. Consequently, in the 
previous scarcely any years, numerous endeavors have been 

done to think of robotized approaches for creating test 

information sources and upgrades to meet distinctive test 

objectives (e.g., branch inclusion). Three distinct methods to 
produce experiments consequently hang out in this situation: 

representative execution, search based, and irregular 

methodologies [15]. 

 

B. Machine Learning 

Essentially, problem solving using computers revolves 

around coming up with algorithms, which are sequences of 

instructions that when carried out turn the input (or set of 

inputs) into an output (or set of outputs). For instance, many 

algorithms for sorting have been proposed over the years. As 

input, these algorithms take a set of elements (e.g., numbers) 

and the output is an ordered list (e.g., list of numbers in 
ascending or descending order). 

 

Many problems, however, do not lend themselves well 

to being solved by traditional algorithms. An example of 

problem that is hard to solve through traditional algorithms is 

predicting whether a test case is effective. Depending on the 

test, the input is like: for instance, for a program that 

implements a sorting algorithm, it is a list of elements (e.g., 

numbers). Also know what the output should be: an ordered 

list of elements. Nevertheless, the test does not know what 

list of elements is most likely to uncover faults: that is, what 
inputs will exercise different parts of the program’s code. 

 

There are many problems for which there is no 

algorithm. In effect, trying to solve these problems through 

traditional algorithms has led to limited success. However, in 

recent years, a vast amount of data concerning such problems 

has become available. This rise in data availability has 

prompted researchers and practitioners to look at solutions 

that involve learning from data: ML algorithms. 

 

Apart from the explosion of data being captured and 

stored, the recent widespread adoption of ML algorithms has 
been largely fueled by two contributing factors: first, the 

exponential growth of compute power, which has made it 

possible for computers to tackle ever-more-complex 

problems using ML, and second, the increasing availability 

of powerful ML tools [16], [17]. Due to these advances, 

researchers and practitioners have applied ML algorithms to 

an ever-expanding range of domains. Web search engines, 

natural language processing, speech recognition, computer 

vision, and robotics [18]- [20]. It is worth noting, however, 

that ML is not new. As pointed out by Louridas and Ebert 

[21], ML has been around since the 1970s, when the first ML 
algorithms emerged. 

 

Let us go back to the problem of predicting the 

effectiveness of test cases. When facing problems of this 

nature, data come into play when it is needing to know what 

an effective test case looks like. Although we might not know 

how to come up with an effective test case, we assume that 

some effective test cases will be present in the collected data 

(e.g., set of inputs for a program whose run-time behavior 

was also recorded). If an ML algorithm can learn from the 

available test-case data, and if the program under test did not 
deviate much from the version used during data collection, it 

is possible to make predictions based on the results of the 

http://www.ijisrt.com/


Volume 5, Issue 9, September – 2020                                    International Journal of  Innovative Science and Research Technology                                                 

                                         ISSN No:-2456-2165 

 

IJISRT20SEP344                                                               www.ijisrt.com                   1303 

algorithm. Although the ML algorithm may not be able to 

identify the whole test-case evaluation process, it can still 
detect some hidden structures and patterns in the data. In this 

context, the result of the algorithm is an approximation (i.e., 

a model). In a broad sense, ML algorithms process the 

available data to build models. The resulting models embody 

patterns that allow us to make inferences and better 

characterize problems as predicting the effectiveness of test 

cases. 

 

At its core, ML is simply a set of algorithms for 

designing models and understanding data [19], [20]. 

Therefore, as stated by Mohri et al. [18], ML algorithms are 

data-driven methods that combine computer science concepts 
with ideas from statistics, probability, and optimization. As 

emphasized by Shalev- Shwartz and Ben-David [22], the 

main difference in comparison with traditional statistics and 

other fields is that in computer science, ML is centered 

around learning by computers, so algorithmic considerations 

are key. 

 

Many ML algorithms have been devised over the years. 

Essentially, these ML algorithms differ in terms of the 

models they use or yield. These algorithms can be broadly 

classified as supervised or unsupervised. 
 

Software has been playing an increasingly important 

role in modern society. Therefore, ensuring software quality 

is vital. Although many factors impact the development of 

reliable soft- ware, testing is the primary approach for 

assessing and improving software quality [3]. However, 

despite decades of research, testing remains challenging. 

Recently, a strategy that has been adopted to circumvent 

some of the open issues is applying ML algorithms to 

automate software testing. We set out to provide an overview 

of the literature on how researchers have harnessed ML 

algorithms to automate software testing. We detail the 
rationale behind our research in the following sections. 

 

III. PROBLEM STATEMENT AND 

JUSTIFICATION 

 

Although applying ML to tackle software-testing 

problems is a relatively new and emerging research trend, 

many studies have been published in the past two decades. 

Different ML algorithms have been adapted and used to 

automate software testing, however, it is not clear how 

research in this area has evolved in terms of what has already 
been investigated. Despite the inherent value of examining the 

nature and scope of the literature in the area, few studies have 

attempted to provide a general overview of how ML 

algorithms have contributed to efforts to automate software-

testing activities. Noorian et al. [29], for instance, proposed 

a frame- work that can be used to classify research at the 

intersection of ML and software testing. Nevertheless, their 

classification framework is not based on a systematic review 

of the literature, which to some extent undermines the scope 

and validity of such framework. 

 
 

Drawing from his personal experience, Briand [26] 

gives an account of the state-of-the art in ML applied to 
software testing by describing many applications the author 

was involved with over the years as well as a brief overview 

of other related research. Furthermore, owing to his 

assumption that ML has the potential to help testers cope 

with some long-standing software-testing problems, Briand 

argues that more research should be performed toward 

synthesizing the knowledge at the intersection of these 

research areas. Although evidence suggests that software 

testing is the subject for which a substantial number of 

systematic literature reviews have been carried out [30], to 

the best of our knowledge, there are no up-to-date, 

comprehensive systematic reviews or systematic mappings 
providing an overview of published research that combines 

these two research areas. 

 

The problem statement can be still mapped to usage of 

machine learning techniques for automation testing. This 

paper provides information on using ML for automation with 

the use cases, challenges and software testing: outlining the 

most investigated topics, the strength of evidence for, and 

benefits and limitations of ML algorithms. The results of this 

systematic mapping will enable researchers to devise more 

effective ML-based testing approaches, since these research 
efforts can capitalize on the best available knowledge. In 

addition, given that ML is not a panacea for all software-testing 

issues, we conjecture that this paper is an important step to 

make headway in applying ML to software testing. Essentially, 

the results of this paper have the potential to enable 

practitioners and researchers to make informed decisions 

about which ML algorithms are best suited to their context, 

secondary studies as ours can be used as a starting point for 

further research. Another contribution of our paper is the 

identification of research gaps, paving the way for future 

research in this area. 

 
C. Role of machine learning in automation 

Basically, ML tech are trained to process information, 

recognize plans and designs, make and assess tests without 

human help. This is made conceivable with profound 

learning and neural systems — when a machine self-

instructs dependent on the gave informational collections or 

information separated from an outer source, for example the 

web. The requirements for ML deployment require two 

primary approaches: 

 To train the ML models to make automated tests. A few 

endeavors have been made in this field with changed 
achievement.  

 To instruct AI to arrange tests, choosing self-sufficiently 

on what to run, what to fix, and what to dispose of. 

 

D. Challenges in Current Automation testing 

The traditional QA approach is based on the system 

used to test the collection of basic tasks that together shape 

the overall project. A tester needs to go in a way to do from 

the smallest elements up to the largest. Since the customers 

are always anxious, conventional forms of testing tend to 

satisfy their demands. Toward the start of a task, testing can 
go in corresponding with intensifying functionality, however 

the more complex an application turns into, the more 

http://www.ijisrt.com/


Volume 5, Issue 9, September – 2020                                    International Journal of  Innovative Science and Research Technology                                                 

                                         ISSN No:-2456-2165 

 

IJISRT20SEP344                                                               www.ijisrt.com                   1304 

challenging it becomes to ensure it has full test inclusion. 

Consistently, QA Engineers discover a plenty of troubles 
and burn through a great deal of time to locate an 

appropriate arrangement. While including new changes, 

existing code that has just experienced testing may quit 

working. Each time the development group changes existing 

code, they should complete new tests. Regression testing 

cycles can snatch quite a while undertaking them physically 

can overpower QAs. This is an impressive test for some 

organizations. To oversee testing work processes effectively, 

organizations need to involve exceptionally talented experts 

and frequently draw in the administrations of specific 

accomplices who come prepared to handle the most 

convoluted issues and decide the best answers for every 
specific venture. More difficulties originate from the 

embodiment and objectives of automated testing, where the 

ML testing apparatuses are progressively finding their 

utilization. For groups setting up automates cases, there are 

the accompanying entanglements to keep an eye out for: 

 Checks just explicit cases that are picked: If new 

function is included, the recently made auto-test will at 

present be totally effective, regardless of whether the 

new function doesn't work. Just research testing by 

humans will have the option to identify these changes. 

However, this regularly doesn't happen, since this time is 
spent on re-performing essential tests, so circumstances 

frequently emerge when manual testing checks 

application's routine as an overall thing, losing subtleties.  

 Tedious: For automated tests to run suitably with code 

expansion, QA engineers need to keep tests adjusted, 

which ends up being progressively tangled after some 

time due to amassing and programming commitment. 

 Missing bugs while including new functionality: 

Automated tests can run effectively; they may also fail to 

distinguish the code mistakes in recently included 

highlights. Regularly this requires manual testing, which 
isn't generally conceivable except if the undertaking is 

staffed in like manner.  

 Tend to be flaky and unstable over time as the app 

changes: When actuating elongated test cases, mistakes 

may happen in setting up test - case steps, not in the 

code. In this issue, QA designers should improve a test 

and begin it once again. And, the code based scripting 

solutions will be unstable as the app keeps on adding 

new features and changes over time. 

 Testing architects’ skills: Test automation requires 

specific acquaintance and skills in producing automated 
test contents, implying that looking for the correct 

authorities can be a tedious procedure.  

 Requires human intrusion: It’s hard to automate user 

interface (UI) tests as it requires human intrusion and 

verdict. 

 

Although not a panacea, ML developments are ready 

to mitigate a great part of the automated testing loads. 

Simultaneously, these incipient apparatuses may bring along 

their difficulties, which are talked about in this paper. 

 

 
 

E. Benefits of adopting machine learning in automation 

The following are the benefits of adopting machine 
learning techniques in automation 

1. Accelerating Manual Testing and Overall Processes  

Indeed, even the most progressive application 

advancement associations code bunches of test lines: type 

one line after another, "click here" and "watch that". Clearly, 

this strategy has numerous detriments. Making such tests 

confuses engineers' consideration. Complete test passing may 

take a few days, and several weeks. Manual testing can't 

maintain such a pace, regardless of how diligently it attempts. 

Furthermore, manual functional testing is costly, both in time 

and in currency.  

 
ML will encourage such time-squandering issue for all 

engineers, as composing all contents and analyses a lot of 

informational collections turns out to be all the quicker. ML 

can deal with figuring out log documents thus it will spare 

time and upgrade accuracy in the program immensely. The 

potential results will give QA Engineers a total perspective 

on the adjustments that they should complete. 

 

2. Mechanization the Testing Process  

If the number of test are more, more is the labour cost 

and more expensive their support. Besides, when the 
application must be modified or requires changes, QA 

Engineers need to update the test code. Furthermore, 

frequently things being what they are, most of the endeavors 

of automation rapidly transform into clean maintenance, with 

a couple of changes in additional inclusion.  

 

ML models keep on developing after changes in the 

code. Since the models are not completely encoded, they 

adjust and figure out how to discover new application 

functions themselves. At the point when the ML 

distinguishes alterations, it naturally evaluates them to 

choose whether this is another new feature or imperfections 
of another discharge. Subsequently, hard-coded test contents 

are delicate and require manual refinement after each 

adjustment in the application code and the ML models create 

themselves all through the whole procedure. 

 

3. Analysis of errors 

ML can discover answers to questions like how, where 

and when surprisingly fast or even in seconds. Along these 

lines, analyzers can utilize this data to choose whether coding 

changes are required to forestall program blunders or they 

basically need to apply some different methodologies. QA 
forms are brimming with bugs, they are the fundamental 

piece of this work. After all the efforts and after doing 

everything right there will be situations where the bug 

remains unnoticed. In like manner, ML in the QA situations 

can lead continuous investigation of bugs. 

 

 

 

 

 

 
 

 

http://www.ijisrt.com/


Volume 5, Issue 9, September – 2020                                    International Journal of  Innovative Science and Research Technology                                                 

                                         ISSN No:-2456-2165 

 

IJISRT20SEP344                                                               www.ijisrt.com                   1305 

4. Decrease the Ignored Bugs Probability  

The machine learning approach will offer more solid 
results than traditional testing does. The time expected to 

complete a product testing and search for a bug likewise 

turns diminished. The test coverage will be more and the 

bugs will be not being gone unnoticed. Because the issue of 

disregarded bugs is exceptionally assorted and bears 

amazingly negative outcomes. If the data management is not 

given enough considerations then as an outcome there will be 

entire bundle of unnoticed bugs which will degrade the 

product quality. As an overall result of the unnoticed bugs 

brand’s notoriety will be at stake along with unsatisfied 

clients. But most importantly testers burn through their 

valuable time. But the ML approach will decrease the 
ignored bugs probability compared to traditional approach 

and increase the overall productivity. 

 

5. Anticipating Client Requirements  

Forecasting empowers enterprises to analyze customer 

data for a more proper understanding of the most recent 

products and features can be effectively explained utilizing 

machine learning techniques. Because finding right approach 

to increase the productivity and usage is essential.  

 

6. Algorithms can eliminate poor scripts and increase time to 
value 

The shift from Waterfall to Agile and DevOps 

methodologies is significant. More automation present 

throughout the entire pipeline of activities, including testing 

will lead the path to success for the devops culture.  

 

F. Use Cases 

Eliminate specific, flaky code-based test scripts: Flaky, 

code-based test scripts are a killer for digital quality and are 

often the result of poor coding practices. This reduces 

confidence in test automation scripts. 

 
To know if they have flaky test scripts some indicators 

are: 

- Test results are inconsistent from run to run or platform to 

platform 

- Tests aren’t using stable object locators 

- Tests don’t properly handle environment-related 

implications (e.g., pop-ups, interrupts, etc.) 

 

Flaky scripts, identify the testing bottlenecks and 

where they are not getting value from code-based test 

automation. If flaky test scripts were originally developed 
using a code-based programming language (e.g., Java, 

JavaScript, Python, etc.) in an integrated development 

environment (IDE), can record those scripts with ML-based 

tools, and play them back as many times as needed across 

platforms. Also, it can be done from the ML tool’s UI itself, 

or through a continuous integration (CI) server. Flaky code-

based test scripts are a killer digital quality, and are often the 

result of poor coding practices. 

 

 

 
 

Provide business testers an alternative for test 

automation creation: Test automation suffers from low 
success rates these days. In addition to flaky, code-based test 

scripts, there are two main reasons: Developers and test 

engineers are pressed for time Agile feature teams lack the 

skills to create automation scripts within sprints the lack of 

skills in Agile feature teams represents an opportunity for 

data scientists and business testers. These non-testers can 

leverage the ML-based tools and create robust test 

automation scripts for functional and exploratory testing 

through simple record and playback flows. 

 

Increase test automation coverage: When manual 

testing is replaced with ML-based test automation, likely 
there will be increase the overall test automation coverage 

and reduce the risk of defects escaping into production. 

That’s great, but still need to ensure the team works 

efficiently and drives value. Properly scope the ML-based 

test automation suite with team members to avoid duplicates 

and focus on problematic areas. Also, one must consider 

how teams will view the two methods’ results. Teams must 

strive towards a consistent quality dashboard that shows 

both test automation reports in a single view so management 

can assess the overall product quality with ease. On average, 

ML-based test automation is six times faster than code-based 
testing, which means faster time to value. 

 

Accelerate time to create and maintain test 

automation: On average, ML-based test automation is six 

times faster than code-based testing, which means faster 

time to value. What makes ML-based test automation so 

much faster? Code-based testing requires the developer to 

build the proper environment (e.g., Selenium Grid), set up 

the prerequisites through code and debug the code from 

within the IDE. This takes significant time, skills and effort 

— and it’s not a one-time investment. As the product 

changes, the developer must continually update the code. On 
the other hand, ML-based test creation is typically a record-

and-playback process with built-in self-healing algorithms. 

This generally does not require heavy maintenance, unless 

there are significant changes in the element locators or the 

product itself. However, ML-based tools are less mature 

than code-based tools. As a result, there is less flexibility 

and integration with other tools and frameworks.  

 

Other than these it also includes detecting any changes 

in software and defining whether it’s a bug or an added 

feature that should be tested, updating tests accordingly to 
the features being added, Fixing tests on the run in case a 

certain element is not found, Quickly detecting software 

changes by inspecting history logs and correlating them with 

the test results, Analyzing code to estimate test coverage, 

creating dashboards to unite and share data on tested code, 

current testing statuses, and test coverage, prioritizing test 

cases, speeding up maintenance and test runs, predicting and 

timely notifying about possible and code or test issues etc. 

 

 

 
 

http://www.ijisrt.com/


Volume 5, Issue 9, September – 2020                                    International Journal of  Innovative Science and Research Technology                                                 

                                         ISSN No:-2456-2165 

 

IJISRT20SEP344                                                               www.ijisrt.com                   1306 

IV. CONCLUSION 

 
ML and software testing are two broad areas of active 

research whose intersection has been drawing the attention 

of researchers. Our systematic mapping focused on making a 

survey of research efforts based on using ML algorithms to 

support software testing. Software testing approaches evolve 

day by day to catch up with the pace of application 

development techniques, becoming more complex and 

sophisticated with each step. As a result, fast-growing 

businesses often need to run ongoing, adjustable tests for 

their systems and products. We believe that our mapping 

study provides a valuable overview of the state-of-the art in 

ML applied to software testing, which is useful for 
researchers and practitioners looking to understand this 

research field either for the goal of leveraging or 

contributing to that field. Given the pressures of the high-

accelerating industry, it’s obvious that the new age testing is 

here! ML are undeniably growing to be significant elements 

in software testing and QA as well. And all this is for good 

reason. ML will advance accuracy, give enhanced revenue 

and lower costs for all QA processes. Henceforth, it 

improves competitive positioning and customer experience. 

Most importantly, ML helps identify bugs quicker and 

faster. The testers can stop worrying about losing their jobs 
and start focusing on making better policies. There is no 

reason to fear ML, instead, we should think of possible 

 

REFERENCES 

 

[1]. M. J. Harrold, “Testing: A roadmap,” in Proc. Conf. 

Future Softw. Eng., 2000, pp. 61–72. 

[2]. C. A. Welty and P. G. Selfridge, “Artificial intelligence 

and software engineering: Breaking the toy mold,” 

Automated Softw. Eng., vol. 4,   no. 3, pp. 255–270, 

1997. 

[3]. M. Harman, “The role of artificial intelligence in 
software engineering,” in Proc. 1st Int. Workshop 

Realizing Artif. Intell. Synergies Softw. Eng., 2012, 

pp. 1–6. 

[4]. T. Xie, “The synergy of human and artificial 

intelligence in software engineering,” in Proc. 2nd Int. 

Workshop Realizing Artif. Intell. Synergies Softw. 

Eng., 2013, pp. 4–6. 

[5]. J. Bell, Machine Learning: Hands-On for Developers 

and Technical Pro- fessionals. Hoboken, NJ, USA: 

Wiley, 2014. 

[6]. D. Zhang and J. J. Tsai, “Machine learning and 
software engineering,”Softw. Qual. J., vol. 11, no. 2, 

pp. 87–119, 2003. 

[7]. S. R. Vergilio, J. A. C. Maldonado, and M. Jino, 

“Infeasible paths in the context of data flow based 

testing criteria: Identification, classification and 

prediction,” J. Brazilian Comput. Soc., vol. 12, pp. 71–

86, Jun. 2006. 

[8]. B. Beizer, Software Testing Techniques, 2nd ed. New 

York, NY, USA: Van Nostrand Reinhold Company, 

1990. 

[9]. H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit 
test coverage and adequacy,” ACM Comput. Surveys, 

vol. 29, no. 4, pp. 366–427, 1997. 

[10]. S. Rapps and E. J. Weyuker, “Data flow analysis 

techniques for test data selection,” in Proc. 6th Int. 
Conf. Softw. Eng., 1982, pp. 272–278. 

[11]. A. Orso and G. Rothermel, “Software testing: A 

research travelogue (2000–2014),” in Proc. Future 

Softw. Eng., 2014, pp. 117–132. 

[12]. B. Lantz, Machine Learning With R, 2nd ed. 

Birmingham, U.K.: Packt Publishing, 2015. 

[13]. M. Bowles, Machine Learning in Python: Essential 

Techniques for Pre- dictive Analysis. Hoboken, NJ, 

USA: Wiley, 2015. 

[14]. M. Mohri, A. Rostamizadeh, and A. Talwalkar, 

Foundations of Machine Learning. Cambridge, MA, 

USA: MIT Press, 2012. 
[15]. P. Flach, Machine Learning: The Art and Science of 

Algorithms That Make Sense of Data. Cambridge, 

U.K.: Cambridge Univ. Press, 2012. 

[16]. G. James, D. Witten, T. Hastie, and R. Tibshirani, An 

Introduction to Statistical Learning: With Applications 

in R (Springer Texts in Statistics). New York, NY, 

USA: Springer, 2013. 

[17]. P. Louridas and C. Ebert, “Machine learning,” IEEE 

Softw., vol. 33, no. 5, pp. 110–115, Sep./Oct. 2016. 

[18]. S. Shalev-Shwartz and S. Ben-David, Understanding 

Machine Learning: From Theory to Algorithms. 
Cambridge, U.K.: Cambridge Univ. Press, 2014. 

[19]. C. Anderson, A. V. Mayrhauser, and R. Mraz, “On the 

use of neural networks to guide software testing 

activities,” in Proc. Int. Test Conf., 1995, pp. 720–729. 

[20]. H. Singh, M. Conrad, and S. Sadeghipour, “Test case 

design based on Z and the classification-tree method,” 

in Proc. IEEE Int. Conf. Formal Eng. Methods, 1997, 

pp. 81–90. 

[21]. J. Bowring, J. M. Rehg, and M. J. Harrold, “Active 

learning for automatic classification of software 

behavior,” in Proc. ACM SIGSOFT Int. Symp. Softw. 

Testing Anal., 2004, pp. 195–205. 
[22]. L. C. Briand, “Novel applications of machine learning 

in software testing,” in Proc. 8th Int. Conf. Qual. 

Softw., 2008, pp. 3–10. 

[23]. W. Choi, G. Necula, and K. Sen, “Guided GUI testing 

of android apps with minimal restart and approximate 

learning,” in Proc. ACM SIGPLAN Int. Conf. Object 

Oriented Program. Syst. Lang. Appl., 2013, pp. 623–

640. 

[24]. J. Zhang et al., “Predictive mutation testing,” in Proc. 

25th Int. Symp. Softw. Testing Anal., 2016, pp. 342–

353. 
[25]. M. Noorian, E. Bagheri, and W. Du, “Machine 

learning-based software testing: Towards a 

classification framework,” in Proc. Int. Conf. Softw. 

Eng. Knowl. Eng., 2011, pp. 225–229. 

[26]. K. Petersen, S. Vakkalanka, and L. Kuzniarz, 

“Guidelines for conduct- ing systematic mapping 

studies in software engineering: An update,” Inf. 

Softw. Technol., vol. 64, pp. 1–18, 2015. 

[27]. B. A. Kitchenham, D. Budgen, and P. Brereton, 

Evidence-Based Software Engineering and Systematic 

Reviews. London, U.K.: Chapman and Hall/, 2015. 
 

http://www.ijisrt.com/


Volume 5, Issue 9, September – 2020                                    International Journal of  Innovative Science and Research Technology                                                 

                                         ISSN No:-2456-2165 

 

IJISRT20SEP344                                                               www.ijisrt.com                   1307 

[28]. B. A. Kitchenham, D. Budgen, and O. P. Brereton, 

“Using mapping studies as the basis for further research 
– A participant-observer case study,” Inf. Softw. 

Technol., vol. 53, no. 6, pp. 638–651, 2011. 

[29]. V. R. Basili, G. Caldiera, and H. D. Rombach, “The 

goal question metric approach, ” in Encyclopedia of 

Software Engineering. Hoboken, NJ, USA: Wiley, 

1994. 

[30]. H. Zhang, M. A. Babar, and P. Tell, “Identifying 

relevant studies in soft- ware engineering,” Inf. Softw. 

Technol., vol. 53, no. 6, pp. 625–637, 2011. 

[31]. C. Wohlin, “Guidelines for snowballing in systematic 

literature studies and a replication in software 

engineering,” in Proc. 18th Int. Conf. Eval. 
Assessment Softw. Eng., 2014, paper 38. 

[32]. Vinicius H. S. Durelli, Rafael S. Durelli, Simone S. 

Borges, Andre T. Endo et al. "Machine Learning 

Applied to Software Testing: A Systematic Mapping 

Study", IEEE Transactionsnon Reliability, 2019 

 

http://www.ijisrt.com/

	II. BACKGROUND
	A. Software Testing
	B. Machine Learning

	III. PROBLEM STATEMENT AND JUSTIFICATION
	C. Role of machine learning in automation
	Basically, ML tech are trained to process information, recognize plans and designs, make and assess tests without human help. This is made conceivable with profound learning and neural systems — when a machine self-instructs dependent on the gave info...
	D. Challenges in Current Automation testing
	E. Benefits of adopting machine learning in automation
	F. Use Cases

	IV. CONCLUSION
	REFERENCES


