
Volume 6, Issue 2, February – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21FEB590 www.ijisrt.com 1011

Encrypted and Distributed Data Transfer Protocol

Vivek Vaishya

Department of Computer Engineering,

Pillai College of Engineering, New Panvel, India

Abstract:- Distributed Web is a relatively new invention

of the Internet. As opposed to the current model

followed by the Internet, called Server- Client model,

Distributed Web has almost no concept of a Dedicated

Server and no one is truly regarded as a Client. Every

element is a Peer and thus the name Peer 2 Peer. The

model introduced here serves the content in P2P manner

and enforces every participant to contribute equally thus

by balancing the network. The former concept is derived

from the Bittorrent network while the latter is based

upon the equality concept of Blockchain. This paper

describes how this possible model can be implemented

to be the new Distributed Web.

Keywords:- Cryptocurrency, Blockchain.

I. INTRODUCTION

The Blockchain based technologies like Ethereum

Dapps and IPFS[1] are quite promising and can be seen as a

viable future to the current Web but haven’t gone into

widespread use, yet. The developers require you to first sign

up for the service using some existing Cryptocurrency and a

novice user doesn’t want to get into trouble of setting up

these wallets. Cryptocurrencies like Bitcoin have gained

unclean reputation due to legal concerns surrounding them

in the past.[2] To build any new technology based on

Blockchain, one requires in depth knowledge of the working

of the Blockchain itself.[3] While publishing a website on the
internet, we generally do not worry about the rendering and

distribution. Both of these jobs are responsibilities of Web

Hosting services. So developers need only write their blog

and not worry about anything else. This model is not

possible with the advent of the new Blockchain based

Distributed Internet or what creators refer to as Web 3.0.[4]

This paper talks about an alternative approach to achieving

this goal of distributed web in widespread use for a wide

audience.

The most basic entity of the distributed network is

considered to be a peer. A peer is an end node which is
contributing to the working of the network. It helps other

peers download the data that they already have downloaded.

Each node has its own public address (as well as a

username) to identify it over the network. An overlay

routing scheme using Distributed Hash Table is the

backbone of the entire network structure. Any node can join

the network any time and depart without affecting the

working structure of the network.

When a new node joins the network, it will first

request a Bootstrapping Router closest to it, which is a

volunteer router always having a static IP address. Every

node in the network has a corresponding routing table,

called Distributed Hash Table (DHT),[5] which connects it to

up to n other nodes. Any node, say A, wants to

communicate with any given node, say B, will request the
nearest node, say P, for the destination node’s IP address.

Node P will either give the destination node’s IP address or

of another possible closest node which might have node B’s

IP address. For a network with 2n nodes, at least n nodes will

have an IP address of node B provided B is currently active.

The Bootstrapping Router is responsible for bootstrapping

the DHT routing table of any newly attached node in the

network, since its routing table will either be empty or might

be outdated.[6][7] The BS Router will give the new node the

address of other nodes in the network so the new node will

position itself as if it has always been there.

The DDT (Distributed Data Transfer) address

assignment is randomly calculated with the aid of BS routers

distributed around the world when a new node joins. The

node will own an address for a definite period so long as it is

advertised as active. After 7 days of going inactive, the

address will be reallocated to any other joining node. All the

Message Chunks will be reallocated and re-replicated to

other nodes on the network to keep failover. This way there

is no dependency on a single node in the network.

For a node or user to communicate on the network, it

must first identify the receiver node. For this identification

purpose, it must first acquire the public username through

some other means. No search engine is part of the

implementation as of this paper (for there is no central

database). Once it obtains the public username, it’ll send the

request on the network to grab the receiver's public

communication key. The intermediate nodes will use

overlay routing to acquire the receiver’s public

communication key. This key is not directly propagated to

the sender but the receiver gets a request, whether it wants

to communicate with the sender. This request message
consists of the sender's public username as well as its public

DDT address. This DDT address is used for establishing a

connection between the two parties before each

communication begins. Receiver, if it approves, will directly

send its DDT address to the sender to finalize the connection

establishment process. The two nodes will keep these public

DDT addresses in their key loggers and will keep them

private. The paper suggests that DDT address is only part of

DHT routing and is independent of the communication IP

addresses which is usually provided by the ISP.

http://www.ijisrt.com/

Volume 6, Issue 2, February – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21FEB590 www.ijisrt.com 1012

After the address exchange, two nodes can start

communicating by exchanging their cryptographic keys for
secure communication. For each new Cryptographic Key

Exchange, both the parties need to pay fees in the form of

APT coins. This payment will establish a secure session

between the two and nodes may communicate thereafter.

The protocol provides end to end encryption via a

Distributed Encryption Scheme.

Protocol can also handle channels as in Telegram

Messenger for providing multicast contents. These multicast

channels are subscription based online content providers

administered by multiple admins. Multicast channels are

allocated a predetermined storage initially and this storage
increases as the user base increases, though this cannot grow

exponentially because Karma rules the entire network.

Multicast channels can be of two types, public or private.

Private Channels act as WhatsApp groups while Public

Channels deliver subscription based content. The network is

equipped with support for broadcast messages which will

serve as traditional websites. Hosting a website is a matter

of buying a public DDT Domain from the network and

assigning it an initial supporting node which will serve as

genesis nodes for that website. The Genesis nodes can be

bought from the network through public trading as all the
nodes are willing to share their network capacity. In both the

cases, Broadcast or Multicast, Messages will be downloaded

from the nearest node cache and will be stored if it becomes

a very frequently asked content over the network.

The protocol supports Live Streaming of media content

as well. For Live Streaming, the media content is first

uploaded to the nearest Bootstrapping router and then the

content is downloaded by consumer nodes. As soon as a

node finishes downloading a Chunk of Message from the

Bootstrapping Router, it will broadcast itself as one of the

content providers to BS router thus by increasing its credits.
BS router will keep a list of all these nodes and will evaluate

them based on their latency. Novel joining nodes will be

redirected to the node with least latency instead of BS router

to consume the streaming content. This structure balances

the bandwidth sharing across the network. Irrespective of

downloading the Message chunks from any of the nodes, the

hash is always downloaded from the main streamer and

checked against each chunk. Public streaming has

authenticity and non-repudiation because of hashing but

doesn’t provide confidentiality because of no end to end

encryption.

II. PROTOCOL SPECIFICATION

This section focuses on how the network architecture

will perform various operations.

A. Components of the Network

i) Nodes: These are standard and authentic users sharing

their bandwidth and storage on the network. Authenticity

of the users is guaranteed by their traffic states. Upon
entering the network, users can opt for a Username

which is unique to each node. This Username is a 128 bit

Alphanumeric text that nodes can opt for themselves.

These UserNames serve as a gate for nodes to be
identified on the network. This information is stored in a

decentralized manner in Bootstrapping Routers. An

XOR routing table address is also assigned to each user

similar to how an IP address is assigned to any

communicating node over the internet. This address is

called DDT (Distributed Data Transfer) Address which

is of 160 bits as that in original DHT based trackerless

Bittorrent implementation. The only difference is that

this address space is different from that of the Message

Address space.

ii) Bootstrapping Routers: These are dedicated routers
situated at various geographical areas of the world to

help the nodes find nodes on the network. The

Bootstrapping Routers are needed to avoid Nodes from

sending unnecessary broadcast messages on the network

and flooding the pipe wasting its bandwidth. Each

Bootstrapping Router covers a geographical zone in the

world as explained in Section. The Bootstrapping

Routers are only needed once the node enters the

network either when it is newborn or when it has come

from a Deep Hibernation. When a node sends the request

to a Bootstrapping Router to find another node on the
network, it will send it a list of possible nodes which

know or are close enough to the destination node. Then it

will continue digging in the search using DHT until it

gets close enough to the destination.

iii) Helpers: These are also special nodes but are

contributing their network bandwidth for identifying

other nodes on the network and helping other nodes in

the authentication process. When two nodes

communicate with each other in Unicast mode, they

must first exchange a cryptography key in the distributed

manner as described in Section 3, this requires
intermediary nodes, Helpers serve this purpose.

Furthermore, these also help in routing Request

Messages during node search.

iv) Peers: These are also ordinary nodes but are contributing

their storage for storing temporary request data from a

Unicast message or acting as permanent storage for

Multicast or Broadcast messages. During a Unicast

message, possibility of the receiver node getting down is

more than the sender node. In this case, Peers which are

possibly closest to the receiver, store the request message
in encrypted form for the period until the receiver is back

online. When the receiver comes back online, it will

broadcast its new state to all the nodes in its DHT

routing table, one of which will have the message for the

receiving node. There is a limit on the size of the

message stored in Peers and also the time for which they

remain stored there. These two limits are implementation

dependent.

v) Award for Participation Token (APT): These are very

similar to Cryptocurrencies in Blockchain networks like
Bitcoin and Ethereum. Authenticated Nodes are

rewarded with these currencies for contributing towards

http://www.ijisrt.com/

Volume 6, Issue 2, February – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21FEB590 www.ijisrt.com 1013

the network. These rewards can be increased by

contributing more network bandwidth and storage and
can be used in turn for purchasing personal storage from

the network. APT coins can be purchased for real

currencies. The value of the currency is directly

proportional to the number of active users and inversely

proportional to the amount of bandwidth and storage that

they are contributing. This value fluctuation is created to

ensure trust in the reward system and no single authority

can accumulate a very high amount of these APT coins.

vi) Messages: Any data sent over the network is considered

a message. In a Unicast domain, these messages are

encrypted using 4 Layered Symmetric Encryption
methodology while messages in the Multicast domain

are protected through Hash Key Matching method. This

is further explained in detail in Section 3. Messages in

the broadcast domain are publicly available and can be

viewed or downloaded depending upon the operator’s

policies. Each public Message,

B. The relationship among these components

i) Zone Distribution: The entire network infrastructure is

divided into Zones of a finite number of nodes governed
by the Bootstrapping Routers. These routers aid in easy

identification and searching of end nodes on the network

when a new node joins the network or is coming back
online after a Routing Table Expiration time. Zones are

mostly based on geographical area each of which can

only contain a maximum of 1024 nodes. The number is

implementation dependent and can be changed based on

the infrastructure provided by the libraries and the

security parameters available at the lower layers of the

network (below application layer).

ii) Bootstrapping: When a new node enters the network,

after the sign up stage, it requests to join one of the zones

from the nearest Bootstrapping Router. The Router will

add this node after confirming its verification and will
announce its presence in the network. The zone area may

increase or decrease depending upon the number of

Bootstrapping Routers available in the area and amount

of routing information sent per unit time.

iii) Routing: The network uses Overlay Network routing

scheme for peer to peer communication. The overlay

network finds the target node via XOR operations.

Explaining the working of Overlay routing is beyond the

scope of this paper. We are following the very identical

routing scheme as that is followed in Bittorrent
networks.[2]

Fig. 1 A DDT network with 8 nodes of capacity 672 (+ 128) MB, Peers contributing 128MB storage and Helpers contributing

16MB, each having average network bandwidth of 1MBPS

C. Connection Establishment

i) Unicast Domain: After a node has joined the network, it

must follow a tradition to establish a temporary connection

between the receiver and itself in order to be able to transfer

any message. In order to establish that temporary

connection, it must follow the overlay network concept that
we discussed in the previous section.

 Joining the network doesn’t mean one can contact

anyone else in the network directly. They must first agree

upon their connection to make message transfers.

http://www.ijisrt.com/

Volume 6, Issue 2, February – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21FEB590 www.ijisrt.com 1014

SendFriendRequest(Request):

Request is a dictionary containing following key: value
pairs

[username: (username of userA), address: (DDT Address

of userA), targetname: (username of userB)]

While(True) :

Find closest peer to userB from the local DHT routing

table, say it is peer

If(peer != Request.userB):

SendRequest(peer, Request)

WaitForResult(newPeer)

peer = newPeer

else:

returnedMsg = WaitForConfirmation()
If(returnedMsg.grant == accepted):

AddToRoutingTable(returnedMsg.userInfo)

InitiateConnectionEstablishment(

returnedMsg.userInfo)

else:

Error()

After becoming friends with the recipient, they both

must exchange their security keys as explained in section

Encryption. For every new session, there’s a need of

establishing a secure pathway between the two
communicating nodes. Since Unicast messages are always

encrypted, we do not worry about compromising data at the

lower layers of the network. Messages are directly

exchanged between the two nodes without any intermediary

node once the two nodes have become aware of their public

IP addresses.

 Initiating a Chat is a matter of collecting a

Communication Token from the network in exchange for a

promise that you’ll share your bandwidth and storage for the

growth of the network. This promise is collected in the form

of APT coins. Collecting a Communication Token simply
indicates that you’re interested in message transfer with

someone in the network and so your request should be

queued now. This Communication Token is only needed at

the sender side and is valid for the entire session of the

sender. In this one session, the sender may send messages to

multiple recipients. Further, Unicast messages are never

stored on the network but in vaults of the participating

parties. Participating parties may opt to buy storage from the

network to backup their messages in the network.

InitiateConnectionEstablishment(UserInfo):
Let r = rand(0, 4)

for i = 1 to 4:

key, conMsg, user = GenerateConnectionMessage(

UserInfo, r)

StoreInKeyring(key, r)

SendConnectionMessage(conmsg, user)

r = (r + 1) % 4

Both parties will know each other and have securely

established a connection between each other. Following the

sequence of keys in Keyring, messages are encrypted
between the two nodes.

ii) Multicast Domain: Basic Communicating entities in

Multicast Domain are called Channels. These channels are
usually subscription based service providers which require a

node special permission to join. Establishing a connection in

Unicast domain in an encrypted form is a must as it needs

end to end encryption. On the other hand, Channels do not

require this encryption. So connection establishment is

pretty straightforward in this case.

 Incorporating a Channel- As channels will require

permanent storage from the network, they must give a proof

that they will contribute more bandwidth as well as storage

towards the network. Depending upon how big the channel

is planned to be, the creator must associate those many
admin nodes with the channel (Since each node has a limit

to how much it will contribute at once). Hence the most

basic requirement for creating a channel is to provide more

bandwidth towards the growth of the network and provide as

much storage to the network as the content provided by the

channel in addition to the basic tier.

We propose two types of channels-

Public Channels- As long as a user knows the channel ID,

he can directly join the channel.

Private Channels- A single point of authority exist, namely

administrator, regulating who can join the channel. The

administrator may be a single person but all the associated

nodes will be able to act as Admin Nodes.

 In the latter case, connection establishment is similar to

making friends in Unicast domain. However friend requests

in Public channels are automatically accepted.

 Messages generated by channels are replicated across

networks in multiples of 2, with every other frequency

increment resulting in another replication. The 2 copies
result in always availability of messages thus by increasing

better data redundancy. New replication factor allows the

network to give more importance to that message which has

high demand. Replicas may get automatically reduced over

time as the demand decreases.

 Channels are meant to provide facilities provided by

Bittorrent protocols. So it is quite expected that while

downloading data from channels, the network will work

more like Bittorrent network. The data integrity is a major

concern in any kind of network and hence it is solved using
Hashing.

iv) Broadcast Domain: Broadcast domains are websites

whose contents are publicly available and their addresses

are reserved. With distributed website caching, it is much

faster to load a website than traditional Server- Client

models. They can pay certain nodes on the network to

keep better cache for faster website loading and

downloading files. Every node on the network in

addition to Bootstrapping nodes act as DNS resolver so

the probability of a single point of failure is almost
negligible.

http://www.ijisrt.com/

Volume 6, Issue 2, February – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21FEB590 www.ijisrt.com 1015

D. Message Transfer

 Every single chunk of data transferred on the network
is considered to be a Message. A message can be a file

transferred in the form of an executable, a music, a video, a

document, or even a chat text written by an individual. The

differentiating feature of these Messages is how they are

treated under different circumstances.

i) Size: The size of the Message is one of the biggest

factors affecting how they are stored in the network. The

standard defines the smallest unit of a Message as Chunk

which has a size of 4MBytes [Implementation

Dependent]. Whenever messages are transferred over the

network, they are sent in Chunks to not over burden the
network and avoid packet losses due to error in

sequencing. During transfer, each Chunk is sequenced

and encrypted, if needed, before transmitting over the

network. If the size of a message is too big, it will be

divided into multiple Chunks and transmitted or received

individually (as dictated by Bittorrent protocol).

ii) Frequency of usage- Each message on the network is

counted for its downloads across the network. For a

Message which is frequently being downloaded, it will

be cached on more nodes than a Message with less usage
statistics. The Message caching decreases over time

when the number of downloads in the network decreases.

Again, each node is allowed to configure themselves to

store only caches for those files which are older than a

certain time in the network. Nodes can also dictate what

kind of files they want to serve. Although nodes can

control their individual statistics, they are not allowed to

modify the cache since all the Message Chunks are

hashed and the Client Side Front-end Application will

first check the hash with other nodes before accepting a

file as correct.

iii) Paid Promotion- If a Message is promoted by buying

more priority from the network, it will automatically be

replicated more often than a Message of less priority.

The Priority Purchasing is implementation dependent

but the paper governs that no message be given more

priority than its usage frequency over the network after a

certain period of time. Websites can buy more priority to

have more availability in the network and faster load

time.

iv) Type of Domain- For a message in Unicast domain, no
more than a single replica is made other than the receiver

and sender node. This is to guarantee safe and trusted

message transfer over the network. For a message in a

Multicast or Broadcast domain, at least 3 replicas are

made at the time of creation. As the other conditions

dictate, more replicas may be created over the network

for individual Chunks. With each new download in later

two cases, more replicas are automatically created and

remain in the network until other conditions don’t

falsify.

 Further, in a Unicast system, any message is always

only stored at the two participating nodes’ ends and never

elsewhere. In case, if the receiver is unable to receive the

message at the moment, a request will be sent in the network
for the communication but the actual message will never be

released. This request is stored in few of the network nodes

that the sender assumes are direct neighbours to the receiver.

As soon as the receiver indicates its active status by

broadcasting to its direct neighbour nodes (ones in its

routing table), the intermediary nodes, which have stored the

previous request, will send it to the receiver. Receiver will

then ask the sender to send the message. If the sender is

offline, the process will continue.

E. Live Streaming

Supporting Live streaming of media content is always
the most challenging aspect of any protocol. In a live

environment, each moment is crucial and cannot be missed

and thus a time critical aspect of Message routing is a

necessary feature of any protocol. In other protocols, this is

also regarded as Online Meeting, Conference Call or E-

Lecture. Hence Live streaming is amended as one of the

most integral parts of the EDDT protocol. Live Streaming

feature is implemented in a Distributed manner. During a

conference, Chunks of data are transmitted to all those

nodes which are listening to the sender. While in traditional

conferences, this requires an intermediary in the form of a
dedicated server which will receive the Chunks of

compressed Video data, possibly store it and then

redistribute it to all those listening to the sender node. In this

method, there is no possible way to ensure the reliability of

dedicated servers since those are always closed source

nodes. The method that we propose requires the

intermediary only for initiation of the connection and then

the communicating nodes take over the responsibility of

handling the routing of these data Chunks.

When a Conference starts, after the usual connection

key exchange procedure, the first sender node will identify
the nearest Bootstrapping Router and will send all the

receiver its address (IP). The first few packets are delivered

to the Bootstrapping Router and then this router will

redistribute these packets to all those requesting it. The

protocol puts a restriction on how much bandwidth this

Bootstrapping router will provide for each individual

Conference. Since acquiring bandwidth from the network

always costs APT, there is an absolute need to minimize it.

To achieve so, participating parties have following options,

1. Pay more APTs and keep using Bootstrapping Router as

intermediary.
2. Lower the quality of conference data thus by reducing

the amount of APT paid.

3. Disconnect from Bootstrapping router and initiate

conference in Peer 2 Peer mode.

While the first 2 methods sound interesting, they are

only suitable for corporations which can pay for high

bandwidth to the network. As discussed in the other sections

of this paper, any ordinary node other than Bootstrapping

nodes may also participate as an intermediary to earn more

APTs and balance the network. To explain this, we expand
the third method to discuss in general.

http://www.ijisrt.com/

Volume 6, Issue 2, February – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21FEB590 www.ijisrt.com 1016

There is a need to highlight why Bootstrapping Router

as an intermediary node is so important. When a conference
starts, none of the participating nodes have any idea of the

network capacity of either of the other nodes. Network

capacity includes precious download and upload speed as

well Relative Latency for communicating with a particular

node. Thus there is a need to calculate these and so in the

conference initiation phase, Bootstrapping Router will

calculate all the required attributes and will update the

participating nodes regarding the same. After the knowledge

of all the required attributes, participating nodes may

continue conference in Peer 2 Peer chain.

In a P2P or distributed conference, not all nodes are
equipped with identical networking equipment and thus an

intelligent algorithm governs the message flow among all

these nodes. This is explained using the next generalized

algorithm.

SelectBestReceiverNode(NodeList):

NodeList is a list of all the Node objects communicating

on the conference.

These Node objects contain all the network routing details

such as network capacity details.

This unimplemented algorithm finds the node which has
1. Least overall relative latency among the data

transmission between all the nodes.

2. Highest average as well as Divided Download and

Upload Speed

The selected node will be sent the subsequent Chunks of

Messages in following seconds and the redistribution of

those chunks will happen from that node. It is yet unclear

the performance of this structure as nothing is tested yet.

Fig. 2 Initiating Connection

Fig. 3 Finding new Intermediary

F. Cryptocurrency Coin Mining or APT Coin Mining

 For staying in the network, you’re supposed to

contribute towards the growth of the network. This

contribution can come from either giving bandwidth or

storage or both. In return, the contributor gets APT as a

reward. Unlike Blockchain networks, like Bitcoin and

Ethereum where miners are rewarded only when they

contribute their computational power to the network, DDT

dictates node participation and are rewarded for their

networking capacity.

Upon signing up for the network service, each user is
constrained to contribute a fair amount of storage and

corresponding network bandwidth. This is a bare minimum

amount of contribution needed to be part of the network.

Failing to do so will result in loss of credit and eventually,

they will be kicked out of the network. Beyond this storage

limit, any further contribution will result in rewards of APT.

This paper dictates that a Node must contribute 64MB to

128MB storage per 24 hour to have a valid credit for being

part of the network. These criteria may change depending

upon the overall network transactions. With each Chunk of

Message replica stored beyond this capacity and a half of its
network bandwidth, a node is credited with an APT coin.

When uploading a Message over the network, a node is

required to pay the same amount of APT coin to the

network. In a Unicast domain, no APT coin beyond

Connection Establishment per friend is needed. This

promise dictates until a message is not forwarded. Which

require a tiny portion of APT coin. Again, every time a

connection is lost to a friend, there arises a need to re-

establish the connection and hence new payment. The

amount paid is dictated by the implementation.

In a Broadcast domain, website admins are needed to
pay for hosting their content. This payment is received in

terms of APT coins. Network will offer each Node of its

network to host a particular site’s content. In return, nodes

will be awarded with APT which can be later used to make

certain e-commerce purchases over the network. Dictated by

conditions explained in the Message Transfer section, not all

the nodes on the network may opt for hosting a site’s

content and not one single node is allowed to host beyond a

http://www.ijisrt.com/

Volume 6, Issue 2, February – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21FEB590 www.ijisrt.com 1017

limit of content. This policy ensures that the entire

infrastructure is fairly and equally distributed and no single
point of authority dictates the entire network.

III. ENCRYPTION

A. Distributed Chained Encryption Scheme

 The traditional encryption methods require only two

parties, sender and receiver, to agree upon some predefined

credentials to communicate in a secure and encrypted

fashion. The RSA algorithm,[6] uses asymmetric key

cryptography which requires two keys, Public Key for

encryption and corresponding Private Key for decryption.

There also exists Diffie Hellman Key exchange[7] algorithm
which, in essence, is an asymmetric key cryptography

technique but the same shared key is used on both the sides

for encryption and decryption. These two encryption

methods have received lots of criticism time to time. While

the former one is pretty secure, it requires lots of

computation power or in other words Time and Memory for

encryption and decryption. The later one is faster but may,

theoretically, suffer from Man in the Middle attacks. Hence

we require a better approach for end to end encryption. We

propose a new encryption method to be used for securing

the communication chain, the Distributed Encryption
Scheme.

This is a hybrid key exchange mechanism utilizing the

best of RSA and DH key exchange algorithms. The

requirement is sender, receiver and a number of

Intermediary Transaction Resolvers. The ITR are selected at

random from a pull of other nodes available on the network.

Suppose Node A and Node B are two users on the network

willing to communicate.

We use 10/3 Intermediary scheme, which requires 3

intermediary nodes divided into 3 chains, while recipient is
the 10th node itself.

1. All nodes in the network generate their Public Key using

RSA-2048. This key is available on the public

transactional ledger and can be obtained using a DHT

request.

2. While establishing a connection for the first time or after

the encryption expiration, algorithm

GenerateConnectionMessage will be called.

3. Each node, while serving in the network, may receive

several kinds of requests. One of which is a

ConnectionEstablish request.
4. Based on the result of ConnectionEstablish request,

client may call CompleteConnectionEstablishment

method or follow ResendConnectionMessage.

GenerateConnectionMessage(UserB, seq):

UserB is a dictionary containing receiver’s info Hash such

as his username.

seq is the sequence Number for the current key’s usage

sequence for encryption.

Let conmsg be a tuple of 4096 bits. This bit sequence is

taken randomly.

Let ranvec be a vector of size 4.

Generate a key k of size 128 bits on random. This is one of

the 3 keys used for symmetric encryption.

Let msg be a tuple initialized as,

msg[0] = 1

msg[1, 128] = k
msg[129, 2] = seq

Repeat 4 times:

While(True):

r = rand(0, 3944)

If(contains(rv, r) == False)

Putmsg(msg, conmsg, r)

append(rv, r)

If(i == 1):

m = UserB

else
m = getMediary()

Encrypt(RSA, conmsg[0, 4083], m.PublicRsaKey)

msg[0] = 0

msg[1, 128] = m.UserName

msg[129, 140] = r

Break

conmsg[4084, 4095] = r

Return k, conmsg, m

 The returned conmsg tuple will be sent to node m.
Upon receiving this request, he will call

ConnectionEstablish method. The key k will be stored in the

user's keyring with the current sequence number seq.

ConnectionEstablish(conmsg):

pos = conmsg[8084, 8095]

Let pr be the current user’s private key for RSA.

Decrypt(RSA, conmsg[0, 8083], pr)

forme = conmsg[pos]

If(forme == 1):

CompleteConnectionEstablishment(conmsg, pos)

Else:

nextnode = conmsg[pos + 1, 128]

nextpos = conmsg[pos + 129, 12]

conmsg[4084, 4095] = nextpos

SendConnectionMessage(conmsg, nextnode)

http://www.ijisrt.com/

Volume 6, Issue 2, February – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21FEB590 www.ijisrt.com 1018

Fig. 4 Chained Encryption

CompleteConnectionEstablishment(conmsg, pos) :

key = conmsg[pos + 1, 128]

seq = conmsg[pos + 129, 2]

StoreInKeyring(key, seq)

SendConnectionMessage(conmsg, node):

hashId = ResolveUsername(node.Username)
ip = FindInDHT(hashId)

Send(conmsg, ip)

 The chained structure was chosen so as to keep user

anonymity on the network. It is the same method employed

in Onion Routing for keeping the identity of the end user

safe. Since any node is not aware of the origin and final

destination of the encryption messages, they cannot track the

sender or receiver. Though the sender knows the

intermediary node’s Public addresses, they cannot track

them either as the intermediaries are always selected on
random. While this method is not so intuitive, it shows how

simply the encryption can be achieved without much

computation power.

IV. EVENT DRIVING

 With an expected network infrastructure to be as big as

the internet today, Events must be drought sequentially. This

was decided to avoid certain mistakes made during the

creation of Web 2.0. With Event Driving, every single

public event will be marked by a sequence number. Since

the entire network is distributed, deriving the next sequence
number might be time consuming, this sequence number is

obtained from the nearest Zonal Bootstrapping Router. The

sequence numbers are marked after the Bootstrapping

Router’s ID so every event in an area is closely related to

the Bootstrapping Router of that area. This ledger is shared

with other Bootstrapping nodes after a time limit to make a

Blockchain like Public Transactional Ledger of events.

 Events are always ordered by sequence numbers. Since

Unicast messages are never publicly stored, they don’t need

any public transactional ledger. All the events in Unicast
messages are always numbered privately and thus reside in

the local system.

V. USAGE SPECIFICATION

A. Entering In

 A simple Sign up process is needed to enter in the

network and to verify the authenticity of the user. This

process creates an account for that user which is linked with

the device itself. A unique and system generated ID is

provided at sign up which is essential to be identified in the
network. This ID is used in overlay routing. Apart from this

DDT address, a user may opt to choose a user-friendly

Username for him. This username is used by web crawlers

to help someone find a user. There exists a Username to

DDT Address resolver system but the converse is not true.

This ensures any reverse lookup and User safety. It is

adamant that in no future implementations, the Reverse

Lookup will be provided or endorsed anyhow. After signing

into the network, the device will broadcast its unique ID to

the nearest Bootstrapping Router. It will add the new node

with all the announced details and will announce these

details in the same zone immediately. Soon after, every node
would have updated its routing table.

http://www.ijisrt.com/

Volume 6, Issue 2, February – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21FEB590 www.ijisrt.com 1019

 User is not allowed to send any message just right

away since it has yet not provided the proof of network
capacity. Unless a user contributes his part of the daily

network capacity, it will remain a new node. With every

new transaction taking place with the help of this new node,

its credit increases. The more the credit of the user, the

higher the priority of its messages will be. Credit is based on

how much help that node is providing to the acceptance of

other transactions on the network. This model ensures equal

participation of everyone or in other words the Karma value.

B. Continue to Live

Each node is equal in the entire network. A

Bootstrapping Router is also a node with a fixed IP address.
The Overlay routing is similar to the implementation of

Bittorrent protocol. Moreover, while implementing, it is

advised to use existing Bittorrent DHT implementation to

aid in the development process.

 A few suggested changes are in how long a node is

allowed to stay offline before it is considered dead. If a

node doesn’t receive any request from a particular node for

36 hours, it will mark it inactive. So the non- responding

node will have to reestablish the connection with the

network. This is to ensure that no dead nodes are marked as
active in the network and to avoid storing any messages for

those dead nodes in the network storage.

C. Departing

 One can simply depart from the network without

notifying as network balances itself within 36 hours as if

that node was never there.

VI. IMPLEMENTATION

The proposal is planned to be implemented as drop in

replacement for existing Bittorrent implementations while
providing a Blockchain like feature set. Hence it is planned

to implement the corresponding libraries like DHT using an

existing Bittorrent DHT library and for encryption as well.

This proposal will be implemented first as a library in

JavaScript and run on an existing Browser’s JavaScript

engine. Corresponding app or plugin, mostly in the form of

a native Web Browser cum Social Media app for various

platforms will be launched. On Android and iOS, the target

is to make a native app. On desktops, the protocol will be

enabled via browser plugins so that the multicast and

broadcast features of the protocol can easily be used.

VII. QUESTIONS

1. Why am I not using the Bittorrent swarm to inject this

new structure?

Existing clients can’t resolve encryption requests or

serve the purpose of being intermediary since they are not

equipped with libraries needed for encryption or decryption.

ACKNOWLEDGEMENT

I would like to acknowledge my mentor Prof. Dhiraj

Amin of Pillai College of Engineering, New Panvel for

helping me write this paper and being so supportive

throughout the work. I would also like to thank Prof. Sagar

Kulkarani of Pillai College of Engineering, New Panvel for

reviewing the paper.

I would also like to acknowledge all the developers of

the Blockchain/ Bitcoin and Bittorrent protocol. This paper

would have never been though without those developers.

REFERENCES

[1]. State of the DApps. [Online]. Available:

https://www.stateofthedapps.com/, Last access on

[2]. Legality of Bitcoin by country or territory - Wikipedia.

[Online] Available:

https://en.wikipedia.org/wiki/Legality_of_bitcoin_by_

country_or_territory

[3]. The Ultimate Ethereum Dapp Tutorial. [Online].

Available:

https://www.dappuniversity.com/articles/the-ultimate-

ethereum-dapp-tutorial
[4]. Mat Zago, Why the Web 3.0 Matters and you should

know about it. [Online].

Available:https://medium.com/@matteozago/why-the-

web-3-0-matters-and-you-should-know-about-it-

a5851d63c949

[5]. Distributed Hash Table - Wikipedia. [Online].

Available:

https://en.wikipedia.org/wiki/Distributed_hash_table

[6]. DHT Protocol – Bittorrent

http://www.bittorrent.org/beps/bep_0005.htm

[7]. Simple basic explanation of a Distributed Hash Table

(DHT)
https://stackoverflow.com/questions/144360/simple-

basic-explanation-of-a-distributed-hash-table-dht

[8]. RSA - Wikipedia. [Online].

https://en.wikipedia.org/wiki/RSA_(cryptosystem)

[9]. Diffie Hellman - Wikipedia. [Online].

https://en.wikipedia.org/wiki/Diffie%E2%80%93Hell

man_key_exchange

[10]. Bittorrent DHT (Suggested Library)

https://github.com/webtorrent/bittorrent-dht

http://www.ijisrt.com/
https://www.stateofthedapps.com/
https://en.wikipedia.org/wiki/Legality_of_bitcoin_by_country_or_territory
https://en.wikipedia.org/wiki/Legality_of_bitcoin_by_country_or_territory
https://www.dappuniversity.com/articles/the-ultimate-ethereum-dapp-tutorial
https://www.dappuniversity.com/articles/the-ultimate-ethereum-dapp-tutorial
https://medium.com/@matteozago/why-the-web-3-0-matters-and-you-should-know-about-it-a5851d63c949
https://medium.com/@matteozago/why-the-web-3-0-matters-and-you-should-know-about-it-a5851d63c949
https://medium.com/@matteozago/why-the-web-3-0-matters-and-you-should-know-about-it-a5851d63c949
https://en.wikipedia.org/wiki/Distributed_hash_table
https://stackoverflow.com/questions/144360/simple-basic-explanation-of-a-distributed-hash-table-dht
https://stackoverflow.com/questions/144360/simple-basic-explanation-of-a-distributed-hash-table-dht
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://github.com/webtorrent/bittorrent-dht

