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Abstract:- The present research article develops a Matrix 

Property that provides a comparative analysis and 

assessment of Matrices belonging to appropriately defined 

subsets of the Complex matrix space ( )m nM C
, from a 

nonlinear perspective. The associated Mathematical 

framework is developed and the introduced concepts and 

terminologies Illustrated with appropriate Numerical 

Examples.  
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Notations 

 

 ( )m nM C denotes the Complex Matrix space of  Matrices 

of order m by n 

 ( )R A denotes the Global Mass Factor associated with the 

matrix m nA   

 ( )C A denotes the Global Alignment Factor associated 

with the matrix m nA   

 0 ( )R A denotes the Effective Global Mass Factor 

associated with the matrix m nA   

 ( )H A denotes the Fundamental Matrix associated with 

the matrix m nA   

 ˆ ( )m A denotes the Total mass of the matrix m nA   

 ˆ ˆ( ), ( )A A  
 denote the Component mass portions 

associated with the matrix m nA   

 
11
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 
  and  

11
( )

12

 
   

 
 

 c  denotes the modulus of the complex number c  

  1 2, ,...., me e e denotes the standard Orthonormal 

basis in
mC   and  1 2, ,...., nf f f denotes the 

standard Orthonormal basis in 
nC  

 c
 denotes the complex conjugate of the complex number 

c  
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I. INTRODUCTION 

 

The present research article discusses a Matrix property 

defined on subsets of the Complex Matrix space ( )m nM C , 

which are characterized by the ordered pair of the Global Mass 

Factor and the Global Alignment Factor associated with the 

matrix, denoted as ( , )R C . This matrix property, denoted as

 , provides a comparative analysis of the intrinsic structural 

aspects of the matrices belonging to the particular set, from the 

standpoint of the effect of the individual and overall modulus 

terms of the matrix elements, and overlap of the phase terms 

associated with Individual matrix elements, the phase terms 

determine the overall alignment, i.e. orientation relative to the 

 ,  basis of
2C , the individual modulus terms 

determine the Global mass factor and the Effective Global 

mass factor  associated with the matrix, which in turn, plays 

role in determining the distribution of the total mass associated 

with the matrix into Component mass portions. However,   

being a nonlinear transformation, the presented mathematical 

framework addresses an issue of Matrix analysis from a 

nonlinear perspective, which can reveal intricacies of Matrix 
arrays that may not be apparent under a strictly linear 

algebraic approach to Matrix array structural analysis. 
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II. MATHEMATICAL FRAMEWORK AND 

ASSOCIATED ANALYSIS 

 

1 1

( ),
m n

m n ij i j

i j

A M C A a e f

 

  , we have the 

following:   

 

,ij ij ija r c  Where ,ij ijr a  therefore we have 0,ijr   

,ijc C 1ijc   , we consider the following convention that 

in the case of zero matrix elements of matrix A :   

0 0, 1ij ij ija r c     

 

We define the Global Mass Factor ( ( )R A ), the Effective 

Global Mass Factor (
0 ( )R A ) and the Global Alignment 

Factor ( )C A , associated with the Matrix m nA  : 

 

1 1

( )
m n

ij

i j

R A r
 

    ,   
0

1 1

( ) (1 exp( ))
m n

ij ij

i j

R A r r
 

    ,

11 12 1 21 22 2 1 2

1 1

( ) .... .... ......... ....
m n

n n m m mn ij

i j

C A c c c c c c c c c c
 

 

 

Clearly ( ) , ( ) 1, ( )m nC A C C A A M C     

 

We define the set ( , )M r c as follows: 

 ( , ) ( ), ( , ) ( ) | 0 , ( ) , ( )m n m n m nM r c M C M r c A M C A R A r C A c       

, where we have the condition: 0, , 1r c C c    

 

We now define the following derived properties, based on the 

properties defined above, as following: 
 

 

0

( )(1 exp( )),
ij

ij ij

r
r

r
     where 

0

1 1

(1 exp( ))
m n

ij ij

i j

r r r
 

   , is the numerical 

realization of the Effective Global Mass factor 0 ( )R A  

 

Therefore, 0, 1,2,.. ; 1,2,....,ij i m j n         and    

1 1

1
m n

ij

i j


 

  

 
1 1

(1 exp( ))
m n

ij ij

i j

x r
 

   ,  where we have : 

( ) (0,1), ( , )x A A M r c    

 ( )
ij

ij

r

r
  , where 

1 1

m n

ij

i j

r r
 

 ,  is the numerical 

realization of the Global Mass factor ( )R A  

Therefore, 0, 1,2,.. ; 1,2,....,ij i m j n        and   

1 1

1
m n

ij

i j


 

  

 
1 1

(1 exp( ))
m n

ij ij

i j

y r
 

    ,  where we have: 

( ) (0,1), ( , )y A A M r c    

 

2 2
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 , and we have the following associated Matrix : 

 

                  

2 2

2 2

2 2

1
1 ( )( )
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( ) ( )

1
1 ( )( )
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x y xy

H A I Q A

xy x y
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( )H A  is Hermitian, Positive Definite, ( , )A M r c   

 
 

The Matrix ( )H A  has the following Spectral decomposition: 

 

ˆ ˆ( ) ( ) ( )H A A A         , where the 

eigenvalues of ( )H A , termed as the Component Mass 

portions of the Matrix  m nA   , has the following expressions: 

 

21ˆ ( ) 1 ( )( )
2

A x y        and   

21ˆ ( ) 1 ( )( )
2

A x y      

 

We have:  ˆ ˆ1 ( ) ( ) 3A A      
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The Total mass of the Matrix
m nA 

, denoted as ˆ ( )m A , is 

defined as the trace of the Matrix ( )H A : 

 
2 2ˆ ˆˆ ( ) ( ) ( ) 2 ( )m A A A x y        

 

We define the vector
0

1( )
2

c
C

c

 
  

 
,     where

2

0 0 0, 1C C C C  ,  c is the Numerical realization of 

the Global Alignment Factor ( )C A  

 
We finally define the Matrix property of Interest through the 

following Nonlinear Transformation : 

 

: ( , ) 1,3)M r c  ,       such that:  

0 0( ) ( )A C H A C    

 

 

Numerical Examples 

 

1)  

2 3

1 0 0

0 1 0
A



 
  
 

  , we have the following summary of 

the numerical values for the matrix properties considered as 

part of the presented mathematical framework: 
 

 ( ) 2r A    ,   ( ) 1c A   ,    

0 ( ) 2(1 exp( 1)) 1.2642r A          .... (up to 4 

decimal places) 

 ( ) ( ) (1 exp( 1)) 0.6321x A y A         .....(up to 4 

decimal places) 

 
2ˆ ( ) 2[1 (1 exp( 1)) ] 2.7992m A          .....(up to 4 

decimal places) 

 ˆ ( ) 1A   ,   
2ˆ ( ) 1 2(1 exp( 1)) 1.7992A          

.....(up to 4 decimal places) 

 
ˆ ( )

( ) 100 64.27
ˆ ( )

A

m A

     ,   
ˆ ( )

( ) 100 35.73
ˆ ( )

A

m A

       

.....(up to 2 decimal places) 

 0

11

12
C

 
   

 
 

 
2ˆ( ) ( ) 1 2(1 exp( 1)) 1.7992A A                   

.....(up to 4 decimal places) 

 

2) 

2 3

2 0 0

0 0 0
B



 
  
 

 , we have the following summary of 

the numerical values for the matrix 

 

properties under consideration: 
 

 ( ) 2r B   ,   ( ) 1c B    ,    

0 ( ) 2(1 exp( 2)) 1.7293r B          .....(up to 4 

decimal places) 

 ( ) ( ) (1 exp( 2)) 0.8647x B y B          .....(up to 4 

decimal places) 

 
2ˆ ( ) 2[1 (1 exp( 2)) ] 3.4953m B            .....(up to 4 

decimal places) 

 ˆ ( ) 1B    ,   
2ˆ ( ) 1 2(1 exp( 2)) 2.4953B         

.....(up to 4 decimal places) 

 
ˆ ( )

( ) 100 71.39
ˆ ( )

B

m B

     ,   
ˆ ( )

( ) 100 28.61
ˆ ( )

B

m B

          

.....(up to 2 decimal places) 

 
0

11

12
C

 
   

 
 

 
2ˆ( ) ( ) 1 2(1 exp( 2)) 2.4953B B                  

.....(up to 4 decimal places) 

 

Therefore, , ( 2, 1),A B M r c      ( ) ( )A B   

 

 

III. DISCUSSION AND CONCLUSION 

 
 

The Matrix property   provides a comparative, 

quantitative assessment of the Structural intricacies of 

matrices belonging to any such set ( , )M r c , where

0, 1r c  ,  In the Numerical example considered above, 

both the matrices belong to the same subset ( 2, 1)M r c 

but they are observed to be associated with significantly 
different mass portion distributions owing to different 

distribution of and contributions from the constituent matrix 

elements. In subsequent studies, the Matrix property   will 

be analyzed in more depth to understand more clearly its scope 

and limitations towards its applicability in real life 

Theoretical/Computational problems. 
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