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Abstract:- Graph Convolutional Networks, Graph 

Conventional Networks are a generalised version of 

Convolutional Neural Networks. They are an extension of 

the generic convolutional operation and have the ability 

to deal with non-Euclidean types of data and can easily 

work with nodes and graphs to get features to learn and 

train the networks. They have evolved over time and have 

been applied to various domains. The techniques have 

improved and the performance of the Graph 

Convolutional Networks has been a great tool in the 

domain of research. In this study, we present the 

transformations and improvements of Graph 

Convolutional Networks and analyse the variation of the 

contrast between the traditional convolutional neural 

network and the graph neural network. The different 

applications have been discussed, adaptations have been 

highlighted along with the limitations. 

 

Keywords:- Graph Convolutional Network. 

 

I. INTRODUCTION 

 

Graph convolutional network [7] is a type of neural 

network that has a powerful architecture for machine learning 

on graphs. They are a variant of graph neural networks that 

can deal with the non-regularity of data structures. They 

consist of operations of multiplying input neurons with 

weights. This is the same as the convolutions operations in 

the convolution layers that present in Convolution neural 

networks. The set of weights are called filters and these 

filters act as sliding windows across the images and enable 

the neural network to learn features. Graph convolutional 

networks are an extension of Convolutional Neural Networks 

where the Convolutional Neural Networks are great at 

computer vision tasks and ability to train deep neural 

networks but fall short in their efficiency when it comes to 

variation in the order of the data. While on the other hand, 

Graph convolutional networks have the ability to work with 

the unordered data and can work directly on graphs and deal 

with structural information. One great advantage of using 

Graph convolutional networks is that it solves the problem of 

node classification. Each node provides feature information 

from all neighbours and the aggregate value from the features 

is fed into a neural network. They use both node features and 

structures for the learning and the training. These number of 

hops can be decided as to how fast the information from the 

entire graph can be covered. It is observed that the results 

obtained from a 2 to 3 layered Graph convolutional network 

are quite optimal. The problem of increasing the number of 

layers is the decrease in the performance of the network. This 

is one of the issues that will be addressed in the latter part of 

this paper. 

 

II. UNDERSTANDING GCNS 

 

A. The concept of Convolutional Neural Networks  

Convolutional Neural Network [1] is similar to 

traditional Artificial Neural Networks where they are 

composed of neurons that tend to self-optimize through a 

process of self-learning. Every neuron will still receive input 

and perform an operation which is the very basis of ANNs. 

Throughout the process, that is, from the input raw image 

vectors, reaching the final output of the class score, the whole 

network would still show a single perceptive score function 

which is the weight. The final concluding layer will contain 

loss functions associated with the classes, and further, all of 

the regular tips and tricks built for a traditional ANN will still 

apply. The major notable difference between Convolutional 

Neural Networks [16] and traditional ANNs is that 

Convolutional Neural Networks are majorly used in scenarios 

involving images. This tends to allow us to encode features 

which are image-specific into the architecture so that it helps 

make the network more suited for image-focused tasks like 

pattern recognition within images. This is done while further 

reducing the parameters required to set up the model to not 

make the entire process extremely expensive, both in terms of 

time and space complexities which is one of the largest 

limitations of traditional forms of ANN i.e., that they tend to 

struggle with the computational complexity required to 

compute image data. The basic architecture of a 

Convolutional Neural Network can be broken down into the 

following: 

● The Input layer: It will hold the pixel values of the input 

image. 

● The Convolutional Layer: This will determine the output 

of neurons that are connected to the regions which are 

local to the input through the calculation of the scalar 

product of their weights with the region connected to the 

input volume. This aims to apply an elementwise 

activation function like the sigmoid to the output of the 

activation which is produced by the previous layer. 
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● The Pooling Layer: This will perform down sampling 

throughout the spatial dimensionality of the input that is 

given, which further reduces the number of parameters 

within that activation which contributes to lesser 

computation power. 

● The Fully-Connected Layers: These will finally perform  

similar duties that are found  in standard ANNs and they 

attempt to produce class scores from the aforementioned 

activations.   

 

B. Graph Convolutional Network 

        Graph convolutional network is a type of neural network 

that has a powerful architecture for machine learning on 

graphs. They are a variant of graph neural networks that can 

deal with the non-regularity of data structures. They consist 

of operations of multiplying input neurons with weights. This 

is the same as the convolutions operations in the convolution 

layers that present in Convolution neural networks. The set of 

weights are called filters and these filters act as sliding 

windows across the images and enable the neural network to 

learn features. 

 

       Graph neural networks are a generalised version of the 

convolutional neural networks where the nodes are not 

ordered and the number of nodes connections vary. It 

operates on graphs with a matrix as the input. An input 

feature matrix and a matrix representation of the graph 

structure are both considered as input to the network. Graph 

Convolutional Networks are used for semi-supervised 

learning and the main idea is to take the weighted average of 

all the neighbours nodes features and passing the resulting 

feature vectors through a neural network for training. The 

node level output produced is a feature matrix that can be 

modelled by introducing pooling operations. The input 

matrix is typically not normalised and the scale is changed 

when any multiplication operation takes place. The matrix 

needs to be normalised in order to deal with the problem. 

 

       Graph Convolutional Networks are an extension of 

Convolutional Neural Networks where the Convolutional 

Neural Networks are great at computer vision tasks and 

ability to train deep neural networks but fall short in their 

efficiency when it comes to variation in the order of the data. 

While on the other hand, Graph Convolutional Networks 

have the ability to work with the unordered data and can 

work directly on graphs and deal with structural information. 

As mentioned above, it solves the problem of node 

classification. Each node provides feature information from 

all neighbours and the aggregate value from the features is 

fed into a neural network. They use both node features and 

structures for the learning and the training. Multiple layers 

are stacked on top of one another to get a deep network. The 

output of the previous layer is considered as the input for the 

next layer and so on and so forth. When the layers are 

stacked, the process of gathering information is repeated and 

the number of layers is the maximum number of hops each 

node can travel. This number of hops can be decided as to 

how fast the information from the entire graph can be 

covered. It is observed that the results obtained from a 2 to 3 

layered Graph Convolutional Network are quite optimal. The 

problem of increasing the number of layers is the decrease in 

the performance of the network. Graph Convolutional 

Networks having the semi supervised learning ability with 

normalised propagation leads to an improvement in the 

efficiency in terms of the parameters and operations and 

better prediction. 

 

III. IMPROVEMENTS ON CONVENTIONAL 

GRAPH CONVOLUTIONAL NETWORKS 

 

One definite improvement [4] to Graph Convolutional 

Networks would be to be able to make them go deeper than 

the standard three to four layers and still not face issues like 

the vanishing gradient problem. Drawing from Convolutional 

Neural Networks, Graph Convolutional Networks aim to 

extract rich features at a vertex by cumulating features of 

vertices that are present in its neighbourhood. Most Graph 

Convolutional Networks only update the vertex features at 

each iteration and tend to have fixed graph structures. Recent 

work shows that dynamic graph convolution[8] where the 

graph structure changes in each layer, can learn better graph 

representations as compared to Graph Convolutional 

Networks with a fixed graph structure. We see that the 

dynamically changing neighbours [5]  in Graph 

Convolutional Networks helps mitigate the over-smoothing 

problem. This also results in a comparatively larger receptive 

field in the case of Graph Convolutional Networks. The 

improvement that is suggested is to recompute the edges 

between the vertices with the help of a Dilated k-NN function 

in the feature space of each layer to increase the receptive 

field  further. The following are three operations that can 

enable much deeper Graph Convolutional Networks to be 

trained: 

 

A. Residual Connections  

       The ResGraph Convolutional Network is proposed to 

handle the vanishing gradient problem of Graph 

Convolutional Networks. The PlainGraph Convolutional 

Network, which is the baseline model that consists of three 

blocks: a PlainGraph Convolutional Network backbone 

block, a fusion block, and an MLP [17] prediction block. The 

backbone stacks 28 EdgeConv layers with dynamic k-NN, 

each of which is similar to the one used in DG Convolutional 

Neural Network. There are no skip connections used here. 

The ResGraph Convolutional Network is constructed by 

adding a dynamic dilated k-NN and residual graph 

connections to the aforementioned PlainGraph Convolutional 

Network.  

 

B. Dense Connections  

       DenseNet was proposed to put to use the dense 

connectivity among the layers of a neural network, which 

improves information flow in the network. This allows 

efficient reuse of features amongst the layers. The 

DenseGraph Convolutional Network is proposed to handle 

the vanishing gradient problem of Graph Convolutional 

Networks. The DenseGraph Convolutional Network is built 

by adding dynamic dilated k-NN and dense graph 

connections to the PlainGraph Convolutional Network that 

was previously written about. 
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C. Dilated Aggregations  

      The Dilated wavelet convolution is an algorithm that 

comes from the wavelet processing domain . Dilated 

convolutions were introduced as an alternative to applying 

consecutive pooling layers for dense prediction tasks in order 

to mitigate spatial information loss caused by pooling 

operations. The experiments demonstrate that aggregating 

multi-scale contextual information using dilated convolutions 

can highly increase the accuracy of dense prediction tasks. 

The reason behind this is that the receptive field is enlarged 

by dilation without the loss of resolution. Dilation assists or 

helps the receptive fields of deep Graph Convolutional 

Networks.  

 

       Therefore, dilated aggregation [6] is introduced to Graph 

Convolutional Networks. Out of the many possible ways, a 

Dilated k-NN [9] is used to find dilated neighbours using a 

predefined distance metric after every Graph Convolutional 

Network layer and construct a Dilated Graph.  Thus, by 

adding skip connections to Graph Convolutional Networks, 

the difficulty of training can be addressed, which is the major 

problem of Graph Convolutional Networks to go deeper. 

Additionally, dilated graph convolutions help to gain a larger 

receptive field without loss of resolution. Even using a small 

amount of nearest neighbours, deep Graph Convolutional 

Networks can achieve high performance.  

 

      Another way of letting Graph Convolutional Networks go 

deeper is to use a differentiable generalized message 

aggregation function. This defines a family of permutation 

invariant functions. The definition of such a generalized 

aggregation function provides a new view of the design of 

aggregation functions in Graph Convolutional Networks. A 

new variant of residual connections and message 

normalization layers are further introduced. The new 

generalized aggregation function is suitable for Graph 

Convolutional Networks, as it has a permutation invariant 

property. The generalized aggregation covers commonly used 

functions like mean and max in graph convolutions. 

Additionally, its parameters can be modified to improve the 

performance of diverse Graph Convolutional Network tasks. 

This method improves current state-of-the-art performance 

by 7.8%, 0.2%, 6.7% and 0.9% on the following datasets: 

ogbn-proteins, ogbn-arxiv, ogbg-ppa and ogbg-molhiv, 

respectively. 

 

       Self-supervision helps improve Graph Convolutional 

Networks as well. They help in generalizability and they 

boost Adversarial robustness as well. There are three 

schemes to incorporate self-supervision into Graph 

Convolutional Networks. Out of these, multi-task learning 

seems to work as the regularizer and consistently benefits 

Graph Convolutional Networks in generalizable standard 

performances with proper self-supervised tasks. Self-training 

is restricted in what are the assigned pseudo-labels and what 

data are used to assign pseudo-labels. We also see that the 

performance gain is more visible in few-shot learning 

methods and can diminish with slightly increasing labelling 

rates. In the case of the second, multi-task learning, self-

supervised tasks provide informative and relevant priors 

which benefit Graph Convolutional Network in generalizable 

target performance. Node clustering and graph partitioning 

give priors on node features and graph structures; whereas 

graph completion with priors on both provides help to a 

Graph Convolutional Network in context-based feature 

representation. Third, multi-task self-supervision in 

adversarial training improves Graph Convolutional Networks 

robustness against various graph attacks. Node clustering, as 

well as graph partitioning, give priors on features and links, 

and thus they defend better against feature attacks and link 

attacks. Graph completion, with perturbation priors on both 

features and links, increase the robustness consistently and 

sometimes hugely for the most damaging feature and link 

attacks. 

 

IV. APPLICATIONS OF GRAPH 

CONVOLUTIONAL NETWORKS 

        

Lots of machine learning tasks require dealing with 

graph data which contains rich relation information among 

elements. Modelling physics systems, learning molecular 

fingerprints, predicting protein interface, and classifying 

diseases require a model to learn from graph inputs. In other 

domains such as learning from non-structural data like texts 

and images, reasoning on extracted structures, like the 

dependency tree of sentences and the scene graph of images, 

is an important research topic that also needs graph reasoning 

models. Graph Convolutional Networks (Graph 

Convolutional Networks) are connectionist models that 

capture the dependence of graphs via message passing 

between the nodes of graphs. Unlike standard neural 

networks, graph neural networks retain a state that can 

represent information from its neighbourhood with an 

arbitrary depth. Although the primitive graph neural networks 

have been found difficult to train for a fixed point, recent 

advances in network architectures, optimisation techniques, 

and parallel computation have enabled successful learning 

with them. On several of the tasks described above, systems 

based on graph convolutional networks (Graph Convolutional 

Network) and gated graph neural networks (GGNN) have 

recently exhibited ground-breaking performance. We present 

a comprehensive assessment of the applications of graph 

convolutional networks through adaptations and categorize 

those applications [3] while giving an in-depth overview of 

the process and comparison with state-of-the-art models. 

 

A. Graph Convolutional Network approach for decoding 

EEG Motor Imagery Skills 

Brain Control Interface(BCI) applications have been on 

the rise in the fields of medical engineering. BCIs decode  the 

brain activity so that they can operate devices like artificial 

limbs and wheelchairs. Electroencephalogram(EEG) has been 

the go-to procedure for measuring brain activity due to its 

high resolution, portability and ease of use. EEG based on 

motor imagery(MI) mentally mimics a variety of motor 

activities, such as visualising hand or foot movements. The 

Euclidean structure of EEG electrodes may not effectively 

reflect and describe the interplay between signals. Traditional 

Convolutional Neural Network methods do the classification 

without considering the topological relationship among 

electrodes. Neuroscience presses on the need for analysing 

patterns of brain dynamics, Thus Graph Convolutional 
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Networks were employed to analyse the performance of raw 

EEG signals on different types of motor imagery tasks while 

giving equal importance to topological relationships of 

electrons[12]. The model was built on Pearson's matrix of 

overall signals, for representing the traditional topological 

relationship of EEG electrodes a graph Laplacian was built. 

The Graph Convolutional Networks-Net has an 

experimentally determined architecture with six convolution 

and six pooling layers, pooling layers are employed to reduce 

the dimensionality of the model, the soft plus function is used 

as activation function for convolution layers, the output layer 

uses the SoftMax activation function 

 

 This particular model used the same dataset as 

‘PhysioNet’, the state of the art model in the given field, 

while the experiments have shown that at the hundredth 

subject level the Graph Convolutional Networks-Net model  

outperformed all the other studies. The Graph Convolutional 

Networks-Net was able to predict MI tasks with 99.18 

maximum accuracy and 96.24 average accuracy, showing the 

robustness and effectiveness of the proposed model. It, on the 

other hand, accurately predicted all four MI tasks, the best of 

which was the two feet prediction, which had a 99.42 percent 

accuracy. It showed that the proposed technique could 

provide a generalised representation that was resistant to both 

personal and group-wise changes. It may be used to decode 

any EEG MI signals as well as other EEG-based graph-

structured data in order to create more effective and efficient 

BCI systems. 

 

B. BRP-NAS: Prediction-based NAS using Graph 

Convolutional Networks 

In comparison to hand-crafted alternatives, neural 

architecture search (NAS) has shown remarkable 

effectiveness in automatically building competitive neural 

networks. NAS, but on the other hand, is computationally 

expensive, as it requires the training of models or introduces 

non-trivial complexity into the search process. Furthermore, 

in addition to being accurate, real-world deployment 

necessitates models that satisfy efficiency or hardware 

limitations (e.g., latency, memory, and energy consumption), 

yet obtaining different performance metrics of a model can be 

time consuming, irrespective of the cost of training it. It has 

been demonstrated empirically that an accurate latency 

predictor is crucial in NAS when latency on the target 

hardware is of interest, and conventional latency predictors 

are excessively error-prone. On a variety of devices, the 

research offers an end-to-end NAS latency prediction based 

on a Graph Convolutional Network and shows that it 

outperforms prior methods (proxy, layer-wise) [13]. 

 

      A Graph Convolutional Network that learns models for 

graph-structure data is used in the proposed end-to-end 

latency predictor. The Graph Convolutional Network 

predictor comprises four layers of Graph Convolutional 

Networks, each with 600 hidden units, and a fully connected 

layer that provides a scalar latency prediction. All predictors 

are trained 100 times with a randomly sampled set of 900 

models from the NAS-Bench-201 dataset each time. The 

remaining 14k models are utilized for testing, while 100 

random models are used for validation. 

 

TABLE I.  PERFORMANCE OF LATENCY PREDICTORS ON THE NAS-BENCH-201: OUR GRAPH CONVOLUTIONAL NETWORK PREDICTOR 

OUTPERFORMS THE LAYER-WISE PREDICTOR ACROSS DIFFERENT DEVICES. 

Error Bound 

Accuracy of Graph Convolutional Network Predictor Accuracy of Layer-wise predictor 

Desktop CPU Desktop GPU Embedded GPU Desktop CPU Desktop GPU Embedded GPU 

±1% 36.0±3.5 36.7±4.0 24.3±1.4 3.5±0.2 4.2±0.2 6.1±0.3 

±5% 85.2±1.8 85.9±1.9 82.5±1.5 18.2±0.4 17.1±0.3 29.7±0.8 

±10% 96.4±0.7 96.9±0.8 96.3±0.5 29.6±1.1 32.6±1.2 54.0±0.8 

 

        Table 1 compares the performance of the proposed 

Graph Convolutional Network latency predictor to that of the 

layer-wise predictor on various devices. The percentage of 

models with predicted latency within the corresponding error 

bound relative to measured latency is shown by the values. 

We can observe that the excellent performance is consistent 

across a variety of devices with radically varying latency 

characteristics. 

 

C. New Tricks of Node Classification with Graph 

Convolutional Networks 

       Methods based on the 3D Morphable Model (3DMM) 

have had a lot of success reconstructing 3D face forms from 

single-view pictures. However, the face textures 

reconstructed using these approaches do not have the same 

quality as the input pictures. Recent research shows that 

generative networks can recover high-quality facial textures 

from a large-scale collection of high-resolution UV maps of 

face textures, which is difficult to create and not publicly 

available. This research provides a method for reconstructing 

3D facial forms with high-fidelity textures from single-view 

pictures captured in the wild, without the requirement for a 

large-scale face texture library, in this work. The basic 

concept is to use face features from the input image to 

improve the first texture created by a 3DMM-based 

technique. Instead of recreating the UV map, we suggest 

using graph convolutional networks to reconstruct the precise 

colours for the mesh vertices[14]. 

 

       This system is made up of three modules, and it provides 

a coarse-to-fine method for 3D face reconstruction. A 

Regressor for regressing the 3DMM coefficients, face 

position, and lighting parameters, and a FaceNet for 

extracting image features for future detail refining and 
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identity-preserving are included in the feature extraction 

module. The texture refinement module is made up of three 

graph convolutional networks: a Graph Convolutional 

Network Decoder that decodes FaceNet features and 

generates detailed colours for mesh vertices, a Graph 

Convolutional Network Refiner that refines the vertex colours 

generated by the Regressor, and a combiner that combines the 

two colours to produce final vertex colours. The 

Discriminator uses adversarial training to try to enhance the 

texture refinement module's output. 

 

       The results obtained from this research are extremely 

promising and the Graph Convolutional Network was highly 

effective in predicting accurate colours and mesh vertices and 

outperformed other models by far.   

 

D. Point Cloud Upsampling using Graph Convolutional 

Networks. 

      As seen above, adaptations like residual connections, 

dense connections, and dilated convolutions, Graph 

Convolutional Networks were made to go deeper by getting 

rid of the gradient problem. With slight adaptations, Graph 

Convolutional Networks can be used effectively in the task of 

point cloud upsampling. Deep learning-based approaches for 

point cloud upsampling do not rely on priors or hand-crafted 

features to learn how to upsample point clouds, unlike classic 

optimization-based methods. The use of point clouds to 

represent 3D data is becoming increasingly common. The 

rising availability of 3D sensors is contributing to this 

growing popularity. Such sensors are now an essential 

component of key robotics and self-driving automobile 

applications. But due to computational constraints, both in 

terms of time and space, these 3D sensors often produce 

sparse and noisy point clouds, which end up portraying 

evident limitations.  

 

      The upsampling modules and feature extractors employed 

greatly influence the efficacy of learning-based point cloud 

upsampling processes[10]. An efficient method is one that 

uses a Graph Convolutional Network (Graph Convolutional 

Network) to improve the encoding of the local point 

information from point neighbourhoods. This method has 

proved to extensively improve state-of-the-art upsampling 

methods. The other part that needs to be worked on in order 

to receive an efficient upsampling result would be an 

improved feature extraction. This is achieved through a multi-

scale point feature extractor which is called the Inception 

DenseGraph Convolutional Network. This performs by 

aggregating features at multiple scales, leading to better final 

performance efficiency. When the Inception DenseGraph 

Convolutional Network is combined with the aforementioned 

approach, it results in the PU-Graph Convolutional Network. 

The above adaptation of a novel Graph Convolutional 

Network was compiled and experimented on a new large-

scale dataset PU1K for point cloud upsampling and also a 

dataset that was 8 times larger than the PU1K dataset and 

both the results were concurrent. Extensive experiments 

demonstrate that our proposed PU-Graph Convolutional 

Network pipeline, which integrates Inception DenseGraph 

Convolutional Network and a system to better encode local 

point information from point neighbourhoods, outperforms 

state-of-the-art methods on PU1K and the other dataset while 

requiring fewer parameters and being more efficient in 

inference. It also produces a higher upsampling quality on 

real-scanned point clouds compared to other methods. 

 

E. Temporal action identification using Graph Convolutional 

Networks 

      Temporal action identification [11] is a crucial yet 

difficult job in video comprehension. Although video context 

is a crucial signal for efficiently detecting activities, current 

research focuses mostly on temporal context, disregarding 

semantic context and other important context features. To 

attain good efficiency in the aforementioned Temporal action 

identification, a graph convolutional network (Graph 

Convolutional Network) model which adaptively incorporates  

multi-level semantic context into video features and casts 

temporal action detection as a sub-graph localization problem 

can be used. In this method, video snippets are defined as 

graph nodes, snippet-snippet correlations as edges, and 

context-associated actions are defined as target sub-graphs.  

 

      With graph convolutional being the base, a GCNeXt is 

designed, which learns the features of each node. It does this 

by aggregating its context and dynamically updating the 

edges in the graph. Each sub-graph must be localised. In 

order to do this, an SGAlign layer is introduced to embed 

each individual sub-graph into the Euclidean space. 

Experiments show that this method is capable of finding 

effective video context without extra supervision and 

achieves more efficient results than state-of-the-art 

performance at multiple instances. The SGAlign extracts sub-

graph features using a set of anchors. SGAlign aligns node 

characteristics along temporal and semantic graphs and 

outputs a concatenation of both features. The order of nodes 

is maintained in the final representation when utilising the 

temporal graph. Since node features are represented by their 

feature neighbours, this isn't necessarily true for the semantic 

network. In the GCNeXt block, temporal and semantic 

networks of the same cardinality process the input feature. In 

each box, we show the (input channel, output channel). Both 

convolution streams use a split-transform-merge method with 

32 pathways to boost transformation variety. The total of both 

streams and the input is the output of the module. 

 

F. Graph Mining 

      Graph mining is a set of tools and techniques for 

analysing the properties of real-world graphs, forecasting how 

the structure and properties of a given graph might affect a 

given application, and creating models that can generate 

realistic graphs that match the patterns found in real-world 

graphs of interest. Graph mining techniques [2] are often used 

to find valuable structures for later tasks. Frequent subgraph 

mining, graph matching, graph classification, graph 

clustering, etc., are some traditional graph mining challenges.  

Although certain downstream tasks may be addressed directly 

using deep learning without the need for graph mining, the 

fundamental problems are worth investigating from the 

standpoint of GNNs. 
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       Let us consider some challenges. The first challenge is 

graph matching. Traditional methods for graph matching 

usually suffer from high computational complexity, both in 

terms of time and space constraints. GNNs allow researchers 

to use neural networks to capture the structure of graphs, 

providing yet another answer to the challenge. A Siamese 

MPNN model was proposed to learn the graph editing 

distance. It consists of two parallel MPNNs with the same 

structure and weight sharing. The goal of the training is to 

embed a pair of graphs with a short editing distance into a 

small amount of latent space. While tests were carried out on 

more real-world circumstances, such as a similarity search in 

a control flow graph, several comparable approaches were 

created. Graph clustering is the second challenge, which 

involves grouping the vertices of a graph into clusters based 

on the graph topology and/or node characteristics. Various 

node representation learning works have been created, and 

the node representation may be given to classic clustering 

methods. Graph pooling, in addition to learning node 

embeddings, may be thought of as a form of clustering. They 

look at what makes a successful graph clustering technique 

desirable and offer ways to improve the spectral modularity 

metric, which is a very useful graph clustering metric. Graph 

Convolutional Networks, therefore, assist us in overcoming a 

variety of difficulties in addition to those mentioned above. 

This results in a significant boost in efficiency and 

productivity. 
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