An Efficient Degraded Primary Scheduling Algorithm For Virtual Mapreduce Clusters


Authors : S.S.Aravinth , M.Mangaiyarkarasi , A.kesavini.

Volume/Issue : Volume 2 - 2017, Issue 5 - May

Google Scholar : https://goo.gl/QvcX6u

Scribd : https://goo.gl/hpGRkE

Thomson Reuters ResearcherID : https://goo.gl/3bkzwv

The witnessed an increasing adoption of erasure coding in modern clustered storage systems to reduce the storage overhead of traditional 3-way replication. However, it remains an open issue of how to customize the data analytics paradigm for erasure coded storage, especially when the storage system operates in failure mode. The propose degraded first scheduling, a new MapReduce scheduling scheme that improves MapReduce performance in erasure-coded clustered storage systems in failure mode. Its main idea is to launch degraded tasks earlier so as to leverage the unused network resources. The proposes degraded-first scheduling algorithm, whose main idea is to schedule some degraded tasks at earlier stages of a MapReduce job and allow them to download data first using the unused network resources. The experiment conduct mathematical analysis and discrete event simulation to show the performance gain of degraded first scheduling over Hadoop’s default locality-first scheduling.

Keywords : Degraded First Scheduling Algorithm, Mathematical Analysis And Discrete, Erasure-Coded Storage.

CALL FOR PAPERS


Paper Submission Last Date
31 - October - 2021

Paper Review Notification
In 1-2 Days

Paper Publishing
In 2-3 Days

Video Explanation for Published paper

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe